
Black plate (1,1)

NetBeans Guide: Faculty of Mathematics, Computing
and Technology

NetBeans Guide

Contents

Credits 3

1 Introduction 4

2 The NetBeans IDE 6

2.1 What IDEs do 6

2.2 The NetBeans story 7

3 A trip round NetBeans 8

3.1 Getting started 8

3.2 Setting preferences in the IDE 19

3.3 Creating a new project 26

3.4 Adding a new class and using the Source Editor 31

3.5 Using ‘smart’ features in the Source Editor 40

3.6 Creating a project using existing source code 44

3.7 More on running projects 48

3.8 Adding a class library to a project 52

4 Working with packages 55

4.1 About packages 55

4.2 Creating a package 55

4.3 How a class can use a class from another package 56

4.4 Renaming a package 57

4.5 Package hierarchies 58

4.6 Moving classes between packages 59

4.7 Moving classes and packages between projects 59

4.8 Other file types in packages 59

5 Using the NetBeans GUI Builder 60

5.1 Starting the design 61

5.2 Adding Swing components to the GUI 66

5.3 Making the buttons active 74

5.4 About layouts 77

6 Using JUnit to test your code 78

6.1 A simple test case 79

6.2 Creating and using test objects 83

6.3 Test and fix 91

6.4 Running a test suite 94

SUP 02223 5

3.1

Copyright © 2007, 2008, 2010 The Open University

Printed in the United Kingdom by The Charlesworth
Group, Wakefield

SUP022235

Black plate (2,1)

7 Getting started with the GlassFish Server 95

7.1 Deploying a Web project 95

7.2 Modules associated with the enterprise server 98

Appendix A – NetBeans usability hints 100

A.1 Shortcut keys 101

A.2 Setting font sizes in NetBeans 103

Appendix B – Some common problems and their

solutions 104

Appendix C – Common Java layouts 109

Index 111

NetBeans Guide

2

Black plate (3,1)

Credits

This guide is an updated version of an earlier guide – this update was

produced by the following team.

Richard Walker, Author

Clive Buckland, Critical Reader

John Busvine, Curriculum Manager

Dave Evesham, Critical Reader

Sarah Mattingly, Academic Editor

Matthew Nelson, Critical Reader

Ian Blackham, Editor

Callum Lester, Software Developer

Yvonne Slater, Media Project Manager

Sue Stavert, Technical Testing Team

Andrew Whitehead, Graphic Artist

Kamy Yazdanjoo, Media Project Manager

Original team

Richard Walker, Author

Ralph Greenwell, Curriculum Manager

Darrel Ince, Critical Reader and Academic Editor

Sarah Mattingly, Critical Reader

Barbara Poniatowska, Curriculum Manager

Rita Tingle, Critical Reader

Ian Blackham, Editor

Anna Edgley-Smith, Editor

Phillip Howe, Compositor

Callum Lester, Software Developer

Neil Paterson, Media Assistant

Andy Seddon, Media Project Manager

Sue Stavert, Technical Testing Team

Andrew Whitehead, Graphic Artist

Kamy Yazdanjoo, Software Developer

3

Credits

Black plate (4,1)

1 Introduction

This guide is intended to give a practical introduction to NetBeans and to

familiarise you with the facilities required for your study. You should work

through the sections as directed by the instructions provided with your

module. Depending on what module you are studying you may need to

cover only part of the guide.

The guide covers all the main tasks needed to develop and run Java

programs in NetBeans. It also introduces the facilities NetBeans provides for

the interactive design of graphical user interfaces (GUIs), the bundled JUnit

testing framework, and the GlassFish enterprise server.

As well as being a hands-on introduction the guide should also act as a

useful reference that you can come back to later when you need to.

Section 2 outlines what an integrated development environment (IDE) is and

gives a brief history of NetBeans. Section 3 consists of a series of practical

activities that cover all the basic tasks involved in using NetBeans. Each

activity is designed to be short enough to be completed in a single session.

Section 4 provides some important background about how Java packages

work. This section consists only of reading; there are no activities involved.

Section 5 explains, via a series of linked practical activities, how to design a

GUI. Section 6 gives a hands-on introduction to the use of JUnit, an

integrated testing framework. Section 7 introduces the GlassFish enterprise

server and demonstrates how to run a simple web page.

NetBeans usability

NetBeans offers more than one way of doing most tasks. In general an

action can be carried out either by using the mouse or by keyboard

shortcuts. Some common actions can also be performed by clicking on

toolbar buttons. In the body of the guide we describe how to work with the

mouse and we also give the keyboard equivalents.

It is also possible to set the fonts used throughout NetBeans (not just in the

code display but across the user interface generally) to a larger size for ease

of reading.

A summary of useful keyboard commands and information on how to

change the font size in the NetBeans interface is contained in Appendix A.

Getting help

NetBeans provides extensive help files. If you press F1 at any time you will

be presented with a table of contents and a searchable index.

In Appendix B we have gathered together a short list of common pitfalls that

we have come across. Of course this does not come anywhere near covering

every kind of problem, but if you do hit an obstacle we hope this list will

sometimes help!

NetBeans Guide

4

Black plate (5,1)

Conventions used in this guide

Menu selections are indicated by giving the name of the menu followed by

the name of the item to be selected, separated by a vertical bar. For example,

‘select Window|Projects’ means ‘from the Window menu, select Projects’.

This notation can be extended to further tiers of menus, for instance, ‘View|

Code Folds|Collapse’ means ‘from the View menu select Code Folds and

then from Code Folds select Collapse’.

Keyboard commands are indicated by giving the modifier (i.e. Ctrl, Alt,

Shift) or modifiers, plus a character. For example, Ctrl+Shift+O means O

should be pressed while simultaneously holding down the Ctrl and Shift

keys.

Some keyboard commands consist of a function key alone, e.g. F11, or a

modifier and a function key, e.g. Ctrl+F4.

Screenshots in this guide

The exact appearance of many NetBeans windows will depend upon a

number of factors: not just on what version of NetBeans you are using and

whether you have installed any updates, but also on your operating system,

any NetBeans settings you may have chosen as you go along, and what

work you have done in the IDE previously. For this reason what you

actually see in your NetBeans window may, in some cases, differ in minor

ways from the screenshots shown in this guide, although the features should

all work in the same way and the instructions should not be affected.

Before you start

You will need to have installed NetBeans 6.9.1 or a later version (and for

Activity 16 you will need GlassFish 3 or later). This guide does not include

installation instructions, which are provided separately.

Please note that, for convenience, we are assuming that you have installed

the NBGuide2 folder containing the NetBeans projects into the default

location and, since the precise name of this location will depend on your

operating system, we will, when appropriate, refer to the folder location as it

would be for a computer running Windows Vista, that is Documents

\NBGuide2 (which is shorthand for C:\Users\<username>\Documents

\NBGuide2). On a computer running Windows XP the folder would be at

C:\Documents and Settings\<username>\My Documents\NBGuide2.

Aside: the folder is named NBGuide2 to distinguish it from project folders

associated with previous versions of NetBeans that you may have installed

from prior study.

5

1 Introduction

Black plate (6,1)

2 The NetBeans IDE

2.1 What IDEs do

NetBeans is an integrated development environment (IDE). An IDE is a

productivity tool that lets programmers write working code far more quickly

than they would be able to just using basic facilities such as those provided

by Sun as part of the Java Development Kit (JDK).

A typical IDE will provide features such as the following.

. Projects Management of all the files associated with a program, together

with ‘meta-information’ that automatically keeps track of where they are

stored and how they depend on one another.

. Wizards The automation of routine tasks such as the creation of new

projects.

. Editor A customisable structured environment for writing and modifying

source code, which makes the organisation of the code clear by the use

of layout and styles, and provides ‘smart’ features such as automatically

closing brackets and offering a list of possible ways a line of code can be

correctly completed.

. Visual design Interactive visual design of graphical user interfaces.

. Compile and Run Facilities making it easy to compile and run

programs.

. Diagnostics Diagnostic features that help pinpoint syntax and other

errors.

. Help Extensive help built-in or available online.

. Testing Support for program testing.

. Tools Support for tasks such as generating Javadoc documentation and

packaging code for deployment to the end user.

. Versioning Support for keeping track of progressive changes to program

modules.

. Debugging The ability to execute a program step-by-step and inspect the

values of variables at each step.

. Libraries Facilities for the management of Java class libraries, for

example.

. Integration Features that make it easy to integrate Java technology with

other software products.

. Scaling The ability to develop software across a range of scales, from

programs forming part of large server platforms right down to those

intended to run within the limited facilities of a mobile phone.

Early IDEs only supported a single programming language but today a

number of them, including NetBeans, support several languages.

NetBeans Guide

6

The JDK provides basic

tools for compiling and

running Java programs

on a number of

platforms. When we use

an IDE the JDK is still

there but it is normally

behind the scenes.

Black plate (7,1)

2.2 The NetBeans story

NetBeans grew out of a student project in the Czech Republic in 1996. It

was originally called Xelfi and was the first IDE written in Java. In time a

business was developed and the name NetBeans emerged.

In 1999 NetBeans was acquired by Sun Microsystems and launched as an

open source project. At the time of writing there have been more than

18 million downloads of NetBeans.

You can read more about the history of NetBeans and view an interactive

timeline at http://netbeans.org/about/history.html.

7

2 The NetBeans IDE

As of January 2010 Sun

Microsystems was

acquired by Oracle, who

continue to support

NetBeans.

Black plate (8,1)

3 A trip round NetBeans

In this section you will be introduced to all the basic functions needed to

write and run Java programs using NetBeans. The topics are introduced in a

series of practical activities, each short enough to be completed in a single

session.

You will also find this section a useful reference in the future if you need to

remind yourself how to carry out particular tasks.

3.1 Getting started

Activity 1

In this activity you will learn how to:

. launch NetBeans

. open an existing project

. view the project structure

. run a program

. halt a running program

. modify source code

. save changes

. close a project.

Launching the IDE

Launch NetBeans from the Start menu or by double-clicking on the desktop

icon. A splash screen will be displayed while the program is loaded.

NetBeans is a complex piece of software and loading it may take some time.

Eventually the main window will appear. If you are presented with a

dialogue inviting you to register the software you can dismiss it for now.

You can always register later if you wish.

If this is the first time you have used NetBeans you will see a screen similar

to that shown in Figure 3.1.

Figure 3.1 The NetBeans Start screen

NetBeans Guide

8

Black plate (9,1)

If you do not wish to see the Start Page each time you run NetBeans you

can untick the Show On Startup checkbox. This will not affect the

operation of NetBeans, and you can always get the Start Page back by

choosing Window|Reset Windows. Click the button on the Start Page

tab to close it.

You may be offered one or more updates, if so please ignore them for now,

but you can accept when you next start NetBeans: updates will not cause

problems with any of the activities in this guide or in your module.

If a message ‘Cannot connect to internet’ is displayed you should ignore it at

this point.

If you have used NetBeans previously there may be other documents or

windows open within the main NetBeans window. In this case:

. press Ctrl+W repeatedly until all the windows within the main NetBeans

window are closed;

. press Ctrl+5, then Ctrl+2, then Ctrl+1, which will open the windows we

require.

In either case NetBeans should now resemble Figure 3.2, which is the

starting point for this guide.

Figure 3.2 The main NetBeans window

The main window has a menu bar and a toolbar of buttons along the top.

The buttons are shortcuts to some of the functions available from the menus.

Try letting the mouse pointer hover over each button in turn. After a second

or so a tool tip will pop up telling you what the button does. We will

introduce you to those buttons you need to know about in the course of this

guide.

The main window contains two main areas.

To the left is an area with three tabs: Projects, Files, and Services.

Clicking a tab brings the associated window to the front.

9

3 A trip round NetBeans

You may also be asked if

you are willing to allow

anonymous usage

statistics to be collected;

if so you can agree or

not, it is entirely up to

you.

Black plate (10,1)

To the right there is a large area, which is currently empty. When we are

editing Java source files the Source Editor window will appear here.

If you have used this installation of NetBeans before, a project or projects

may already be open in the Projects and Files windows. If so, close them

from the File menu, which you can open from the menu bar or by pressing

Alt+F. You will see a menu option Close Project followed by the project

name in brackets. Select this option and the project will close. If there are

several projects, repeat the process until all are closed.

Minimising windows

Many of the windows in NetBeans can be minimised when not immediately

required and restored again on demand. This is a very useful feature that

helps to make good use of screen space, but it works in a slightly unusual

way, so before going any further we will quickly explore how to minimise a

window.

Click on the Files tab to bring the Files window to the front.

Immediately to the left of the standard Close button in the right-hand

corner of the Files window there is a minimise button . Click this, and the

Files window will be minimised and its icon displayed to the left of the

main window, leaving the Projects and Services windows still open. Click

the button for the Services and Projects windows to minimise them as

well.

All three windows will now be minimised and their icons docked on the left

of the main window (Figure 3.3).

Figure 3.3 Minimised windows

All three are now sliding windows. Move the mouse pointer over one of the

docked icons (Files say) and the corresponding window pops up. Move the

mouse pointer away from the icon (over the toolbar for example) and the

window will hide itself again.

If instead of just moving the mouse pointer over a docked icon you click on

the icon, the corresponding window will open and remain open. At this point

the original minimise button has been replaced by a pin button . Click

NetBeans Guide

10

Black plate (11,1)

on this and it ‘pins’ the window: the button changes back to the minimise

button and the window reverts to its original state.

If you open and then pin first the Services and then the Files window you

should see the two tabs side by side as in Figure 3.4.

Figure 3.4 The Services and Files tabs restored

Restoring the Projects window in the same way will bring NetBeans back

to the position seen in Figure 3.2.

Opening a project

An application in NetBeans is made up of one or more projects. One of

these will typically be set as the main project, the one that will launch first

when the application is run. A project consists of a group of Java files,

together with all the associated information and resources needed to compile

and run the project.

To open a project select File|Open Project... or press Ctrl+Shift+O.

In the Open Project dialogue navigate to the folder Documents

\NBGuide2. This should contain a folder named Greeting.

Figure 3.5 The Open Project dialogue

Highlight the Greeting folder. Make sure Open as Main Project is

ticked as shown in Figure 3.5. Press Return, or click the Open Project

button at the bottom right of the dialogue window.

11

3 A trip round NetBeans

Black plate (12,1)

The project will now appear in the Projects window (Figure 3.6). At the

bottom right of the main window a message may briefly appear saying that

Java SE is being activated (NetBeans operates a system of activating certain

components only when they are first requested). This will usually be

followed by other messages: ‘Opening Projects…’ and then ‘Scanning

Projects…’. These may take several seconds to complete before the project

is fully open.

There may also be a Tasks window open in the lower area of the right-hand

window. We shall not be making use of this so you can close it.

Figure 3.6 The Greeting project when first opened

NetBeans displays open projects in two of the IDE windows.

. The Projects window gives a logical view of the packages and classes in

the project. For now you can just think of a package as a group of

classes that belong together.

. The Files window shows a view of the actual folder structure and all the

files, which may be of many different types (Java source or class files,

HTML, XML, graphics, text, etc.). Some of these will have been

generated automatically by NetBeans; others will have been created by

us, or more generally by you, the user.

Both windows present an expanding tree view of each project – Figure 3.7

shows the Greeting project expanded to show the three classes in the

package greeting.

NetBeans Guide

12

Black plate (13,1)

Figure 3.7 A partly expanded tree view in the Projects window

Try expanding and contracting the nodes by clicking the and icons. You

will find it is possible to collapse the project to a single node, the one named

Greeting that is associated with the Java coffee cup icon . Toggle

between the Projects window and the Files window by clicking the tabs.

We shall be making use of these tree views later, especially the logical view

of the project.

In Projects, as well as the Source Packages folder, which contains the

Java source code for the project, there are three other folders:

. Test Packages

This folder is used by the JUnit testing framework described in Section 6.

. Libraries

Expanding this node reveals what version of the Java Development Kit

NetBeans is currently using.

. Test Libraries

Expanding this node reveals what version, or versions, of the JUnit

framework NetBeans is currently using.

For the time being you can safely ignore these folders.

The Navigator window

You will have noticed a Navigator window has appeared at the bottom left

of the main NetBeans window. In the Projects window expand the

Greeting project to reveal the classes and experiment with clicking on the

classes in turn. A Members View of the members of the class – its

constructors, methods and variables – is displayed. Double-click on any

member and NetBeans will open a Source Editor to display the Java code

with the declaration of the member highlighted (Figure 3.8).

As well as the Members View the Navigator window also has the option

Bean Patterns. We will not be working with Bean Patterns, but they

provide support for the development of reusable software components.

13

3 A trip round NetBeans

At the time of writing

NetBeans supported two

versions, JUnit 4.5 and

JUnit 3.8.2, the latter for

backward compatibility.

Black plate (14,1)

Figure 3.8 The method getText() in the Navigator and the Source Editor

If you allow the mouse pointer to hover over the node for a member its

Javadoc will be displayed in a pop-up window.

If you allow the mouse pointer to hover over the buttons below the

Navigator window the tool tips explain the effect of each button.

Experiment by clicking them to show or hide different features.

Running a project

Select Run|Run Main Project, or press F6. (If you forgot to tick Open as

Main Project in the Open Project dialogue shown in Figure 3.5, the Run

menu will offer the option Run Project (Greeting) rather than Run Main

Project.)

Alternatively you can right-click on the Greeting project node in the

Projects window (the node with the coffee cup icon) and from the

dropdown menu choose Run or you can run the project by clicking the Run

Main Project button on the toolbar .

Assuming this project has not been run before, the Run Project dialogue

will appear, inviting you to select the main class (Figure 3.9).

NetBeans Guide

14

Black plate (15,1)

Figure 3.9 Selecting the main class

greeting.GreetingDialogue should be pre-selected. This is because

it contains a main() method. If more than one class in a project contained

a main method you would have to nominate which one you wanted to use

from a list.

Now press Return or click the OK button, and after a second or two the

project will execute. Enter a name in the dialogue box and press Return or

click the OK button

A window will appear with a greeting message. When you have read

the message you can dismiss the window by clicking the Close

button . This will also halt program execution.

The Output window

You will notice when the project was run an Output window appeared. After

the program has finished executing, that is, when you close the second pop-

up window, the message BUILD SUCCESSFUL is displayed, showing that

the program was successfully compiled and executed.

What ‘compile’, ‘build’ and ‘clean‘ mean

Compiling means converting Java source files, the contents of which are the

human-readable Java statements we have written, into class files that consist

of bytecode. Bytecode is a special language designed to be executed by a

program called a Java Virtual Machine (JVM).

The JVM takes each bytecode statement and translates it into a form that can

execute directly on a particular computer system. Because they are in

bytecode, Java class files are portable – they can be run on any system that

supports a JVM. Versions of the JVM exist for most of the common types of

computer platform, for example Windows, Linux and Macintosh.

Building a project will compile all the Java files it contains. For each source

file a corresponding bytecode file will be created.

15

3 A trip round NetBeans

Java source files have

the extension .java

and compiled files the

extension .class.

Black plate (16,1)

You will not normally need to compile files or build projects manually,

NetBeans takes care of everything. When you save a project NetBeans

automatically builds it. If you run the project NetBeans automatically saves

and builds the project, before calling the JVM to execute the compiled files.

There is also an option to clean projects. This removes any compiled files.

You might choose this option to ensure that no compiled versions of earlier

code have been retained, or if you were sending the project to someone else

and wanted to minimise the size of the folder by not including compiled

classes.

Halting a running program

Some programs will run for a time and terminate when they have completed.

In other cases it may be that the program can be terminated by closing the

user interface window (for example the Greeting program), or perhaps by

pressing a quit button.

On the other hand, some programs may have been written so that they

continue running even after the associated window has been closed. These

need to be halted, otherwise you will end up with many programs (or many

copies of the same program!) all running at once. Some programs may

contain endless loops, or may be malfunctioning, perhaps because of

programming errors; these also need to be terminated.

Run the Greeting program again but this time when the Input dialogue

box appears do not enter a name. Instead choose Run|Stop Build/Run:

Greeting (run). In the Output window you will see a message in red

BUILD STOPPED.

When multiple programs are running this option is replaced by Run|Stop

Build/Run…, and if you select that option NetBeans will present a list of

running processes for you to choose which to stop. You can select multiple

processes to stop with Shift+Click or Ctrl+Click in the usual way.

While a project is running you will also see a progress bar at the bottom

right of the main NetBeans window (Figure 3.10).

Figure 3.10 A project is running

Clicking the close button beside the progress bar will terminate the

project. You will be asked to confirm that you wish to cancel the running

task. If several tasks are running, clicking the progress bar will display a list,

allowing you to terminate individual projects.

Changing source code

Now you are going to change the greeting message that the program

displays.

In the Projects window, make sure the project is expanded so that the three

classes in the package greeting are displayed.

To make the change straightforward we have localised the code where the

message is set in the class Message.

NetBeans Guide

16

Black plate (17,1)

In the Projects window, select the node Message.java. Then in the

Navigator window double-click on the member Message(), which

represents the constructor. The source code for the class Message will be

displayed in the Source Editor (Figure 3.11). This editor is where we can

make changes to the code. NetBeans automatically places the cursor at a

position corresponding to the member we double-clicked.

Figure 3.11 The Source Editor

In the Source Editor click immediately to the right of the line

messageText = "Pleased to meet you ";

Delete the existing string and replace it with "Welcome to NetBeans ",

so the line now reads

messageText = "Welcome to NetBeans ";

This is shown in Figure 3.12.

17

3 A trip round NetBeans

Note that you can also

open the source code for

a class by double-

clicking on the class

name. Alternatively you

can right-click on the

name and choose Open

from the dropdown

menu.

Black plate (18,1)

Figure 3.12 The message has been changed to “Welcome to NetBeans ”

Do not run the program again yet. You are going to save the change you

have made first.

Saving changes

From the File menu select Save. This saves changes made in the Source

Editor, and automatically rebuilds the project. You can also save changes at

any time by pressing Ctrl+S.

Now run the project again. The greeting dialogue should display the altered

message!

Closing a project

Click on the Projects tab, then right-click on the Greeting project node (the

node with the coffee cup icon). From the dropdown menu choose Close.

Alternatively you can select the item Close Project (Greeting) from the

File menu.

Summary of activity

In this activity you have learnt how to launch NetBeans, open a project, run

the code, halt a running process, modify source code and save the changes,

and finally close the project. You have also learned that when a project is

saved NetBeans automatically compiles all the Java files.

You can now exit the IDE (choose File|Exit or press Alt+F followed by X)

or leave it open if you are going straight on to the next activity.

NetBeans Guide

18

Black plate (19,1)

3.2 Setting preferences in the IDE

Activity 2

In this activity you will learn how to:

. set the way NetBeans automatically formats code

. change code template settings

. set the fonts and colours used to display Java code to suit your own

preferences

. choose what browser you want NetBeans to use when it displays Java

documentation or launches a web page

. choose whether line numbers are displayed

. make the Java documentation available in the IDE.

Setting formatting options

Launch NetBeans if it is not already running. Choose Tools|Options. In the

window that opens click the Editor button.

Select the Formatting tab and you will see the window shown in

Figure 3.13.

Figure 3.13 The Formatting tab

From the Language: dropdown list select Java.

From the Category: dropdown list select Alignment. In the panel New

Lines tick the boxes ‘else’, ‘while’, ‘catch’ and ‘finally’, as in Figure 3.14.

Leave the other options at their default setting.

19

3 A trip round NetBeans

It is not essential to set

everything in one go. If

you want you can click

OK at any point to save

your settings and then

resume later by re-

opening the Options

window.

Black plate (20,1)

Figure 3.14 Setting alignment

Next from the Category: dropdown list select Braces. In the panel Braces

Placement use the dropdown lists to set the placement for each of the

following to New Line, as shown in Figure 3.15.

Class Declaration:

Method Declaration:

Other:

Leave the other options at their default setting.

Figure 3.15 Setting braces placement

Next choose the Wrapping category and from the dropdown lists set each of

the following to If Long, as shown in Figure 3.16.

NetBeans Guide

20

Black plate (21,1)

Extends/Implements Keywords:

Extends/Implements List:

Method Parameters:

Method Call Arguments:

Leave the other options at their default setting.

Figure 3.16 Setting wrapping

When you have set the Formatting options as described above your Java

code will be laid out in the same way as the Preview: shown in the right-

hand panel of Figure 3.16. This is the common ‘house style’ used by many

Open University modules. If your module uses a slightly different style you

should be able to adapt the instructions above to suit.

Code templates

Still in the Editor dialogue, click on the Code Templates tab. Code

templates are a set of useful abbreviations which can save you having to

type common combinations in full. At the bottom left is a dropdown box

labelled Expand Template on: . Change this setting from Tab to

Shift+Space. (This will mean that templates are expanded when you type a

space while holding down the shift key. The original setting required you to

type a tab, which we feel, on balance, is less intuitive.)

Next click the Hints tab. If necessary select Java from the Language:

dropdown list. In the tree view on the left expand the node Error Fixes, and

make sure the box Surround with try-catch is ticked. Select Surround with

try-catch and ensure the boxes on the right, Use org.openide.util.

Exceptions.printStackTrace and Use java.util.logging.Logger, are not

ticked. Leave all other options at their default setting, see Figure 3.17.

21

3 A trip round NetBeans

Black plate (22,1)

Figure 3.17 The Hints tab

Setting fonts and colours

You may wish to alter the fonts and colours used to display code, to improve

its readability, or because you have a personal preference. Of course you

may be happy with the existing settings, which is fine, but if you would like

to make changes (or are just interested) the following instructions provide

some details.

Still in the Options window, click on the Fonts & Colors button. This will

bring up the Fonts & Colors pane. First select the Syntax tab (Figure 3.18).

Figure 3.18 Fonts & Colors

This window allows us to specify how the different syntactic elements – for

example Java keywords, or comments – will appear in the Source Editor.

NetBeans Guide

22

Black plate (23,1)

The list headed Category: allows us to choose which element we want to

modify. Alternatively, you can click on any part of the code sample shown

in the Preview: pane and the corresponding category will be selected. The

chosen category can then be changed using the dropdown lists on the right.

For example, in Figure 3.18 the String category has been set so that

Strings will be displayed in red with black wavy underlining.

The Default category defines a basic style from which other categories

normally inherit. For example, if the Font: setting for Default is

Monospaced 12, then the String category will inherit this unless we decide

otherwise. We are free to override the inherited style for selected elements if

we like. Clicking the ellipsis button next to the Font: field brings up the

Font Chooser dialogue which allows us to choose the font, font style and

size. In Figure 3.19 the font and style for the String category have been set

to Tahoma Italic 14 point.

Figure 3.19 Overriding the inherited style

If you have made changes and decide you don’t like them you can put

everything back to the original settings by clicking the Restore button at

top right.

Setting the web browser

NetBeans lets you choose which web browser will be used to display HTML

pages. This is important because Java documentation is in HTML.

We recommend that you use your default system browser – the one that

would launch automatically if you double-clicked on a file with a .html or

.htm extension.

Still in the Options window click on General and check that Web

Browser: is set to <Default System Browser> and that in the Proxy

Settings: panel the Use System Proxy Settings radio button is selected

(Figure 3.20).

23

3 A trip round NetBeans

Black plate (24,1)

Figure 3.20 Setting the web browser

You can now click the OK button to exit Options.

Displaying line numbers

There is no Options setting that determines whether line numbers are

displayed. To toggle line numbers on or off you can select View|Show Line

Numbers. Alternatively, with a class open, right-click in the left-hand

margin of the Source Editor and choose Show Line Numbers.

At this point we suggest you reopen the Greeting project and try toggling

the lines numbers on and off. You can leave the project open for the next

part in which you will look at how to access documentation.

Adding the Java documentation to the IDE

The easiest way to access the Java class documentation while you are

working in NetBeans is to add it to the IDE.

Choose Tools|Java Platforms. You will see something similar to

Figure 3.21.

NetBeans Guide

24

Note that the Usage

Statistics: box may or

may not be ticked

depending on your

previous choices.

Black plate (25,1)

Figure 3.21 The Java Platform Manager

The platforms are the Java Development Kits that NetBeans knows about

and in this case there is only one, JDK 1.6, which is the Default.

Should you see more than one platform, make sure that the Java SE platform

labelled Default is the one highlighted.

In the right-hand pane click the Javadoc tab. To the right of the window

you will now see a button labelled Add ZIP/Folder…. Click this and then in

the Add ZIP/Folder window that opens navigate to the folder C:\Program

Files\Java\jdk1.6.0_21 then highlight the docs1_6 folder (which

contains the Java documentation) and click Add ZIP/Folder.

You will now be returned to the Java Platform Manager. Click Close. The

Java documentation will now be available from the IDE whenever a project

has been opened.

To open the documentation, when a project is open, choose Help|Javadoc

References|Java Platform SE 6. After a few seconds a browser window

will open to display the documentation for Java SE 6.

You can also get context-specific Javadoc for code elements in your

program, by clicking on that element in the Source Editor window and

choosing Show Javadoc. For example given the line of code

private String messageText;

if you select String and, from the right-click menu, choose Show

Javadoc the documentation for the class String will be displayed. Try

this out if you have the Greeting project open.

Summary of activity

In this activity you have learnt how to set editing preferences, how to adjust

code templates, how to change the font, size and colours used to display

Java code, how to choose the browser NetBeans will use for displaying

HTML, how to choose whether line numbers are displayed, and how to

make the Java documentation available in the IDE.

25

3 A trip round NetBeans

Depending on your

operating system you

may need to navigate to

C:\Program Files

(x86)\Java

\jdk1.6.0_21.

Black plate (26,1)

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.3 Creating a new project

Activity 3

In this activity you will learn how to:

. create a new project from scratch

. save your project

. edit Java source code

. understand where your files are located in the Windows folder structure

. rename, move, copy and delete a project.

Creating a new project

Launch NetBeans if it is not already running. If you have any projects

currently open in the Projects window close them before proceeding.

Select File|New Project... (or click the New Project button on the

toolbar, or press Ctrl+Shift+N). The New Project wizard will be displayed

(Figure 3.22).

Figure 3.22 The New Project wizard

NetBeans lets us work with projects of many different categories, from

large-scale server applications, using Java Platform, Enterprise Edition (Java

EE), to applications that run on small mobile devices such as telephones,

using Java Platform, Micro Edition (Java ME), and even on ‘smart cards’

(using Java Card). It is also possible to download and install plug-ins which

allow projects to be developed in a range of different programming

languages, such as PHP, Ruby, C and C++, and Python.

If you make a selection from the left-hand Categories: pane and then the

right-hand Projects: pane the lower Description: pane will be filled with

information about that type of project. In some cases the description will

indicate that the project type chosen has not been enabled (remember

NetBeans only activates some facilities on demand).

NetBeans Guide

26

The description in

Figure 3.22 mentions

Ant. You do not need to

know anything about

this. NetBeans takes care

of all this for you.

Black plate (27,1)

However, for the purposes of this guide we are not interested in most of

these options. The only language we shall be using is Java and all our

projects except the one used in Activity 16 will use Java Platform, Standard

Edition (Java SE).

In this activity we are going to create a small stand-alone application to run

on a desktop computer.

Under Categories: highlight Java and under Projects: highlight Java

Application. Press Return or click Next >.

The wizard will now display the New Java Application window in which

we can set the name and location of the project. Name the project

FirstProject and enter Documents\NBGuide2 for the location.

NetBeans will automatically name and create a folder Documents

\NBGuide2\FirstProject to hold all the project files. Make sure the

boxes Create Main Class and Set as Main Project are both ticked. The

New Java Application window should now look like Figure 3.23.

Figure 3.23 The New Java Application window

Click Finish and the project will be created. This will take a few moments.

The main window will now appear and look similar to that shown in

Figure 3.24. (The @author line will reflect the username logged in.)

Depending on previous work you may or may not see the Tasks and Output

windows.

27

3 A trip round NetBeans

Black plate (28,1)

Figure 3.24 The main window for the new project

The new project is now shown in the Projects window; on the right-hand

side is an open Source Editor window for a class named Main. This class

has been created for us by the wizard. It has been given an outline structure

that follows a standard template, and a class header comment delineated by

/* and */.

You will see that in the main method NetBeans has also supplied a

comment:

// TODO code application logic here

This is inviting us to write some Java code! Position the mouse cursor in

front of this comment and click the mouse. At the insertion point type a

statement such as the following:

System.out.println("This is my first program in

NetBeans");

You should find that as you type, NetBeans prompts with some information

about what can come next. For example, if you type a name then a dot, such

as

System.

a list will pop up (this may take a second or two), suggesting possible

continuations. If you click one of them, NetBeans will display information

about your choice. If you double-click it, or press Return, it will be inserted

in your code (Figure 3.25).

NetBeans Guide

28

The class name Main is

the default name used by

NetBeans. In the next

activity you will learn

how a class can be

renamed.

Black plate (29,1)

Figure 3.25 Code completion

Although it takes a little getting used to, this code completion is an

extremely handy feature, which reduces the typing we have to do and saves

us from always having to remember what methods or variables can be used

at a given point in our code.

When you have inserted your statement you should see something like

Figure 3.26 (the Navigator window may or may not be visible).

Figure 3.26 Class Main after a statement has been inserted

Of course you can overwrite, or delete, the TODO comment if you like, as

we have in Figure 3.26.

29

3 A trip round NetBeans

Black plate (30,1)

Now run the program as described in Activity 1. You should see your

message appear in the Output window, as shown in Figure 3.27.

Figure 3.27 Output from FirstProject

Congratulations – you have written your first program in NetBeans!

Saving your work

NetBeans automatically does a save before running a project, so your

FirstProject is safely saved.

You can also save the current file, i.e. whatever is displayed in the Source

Editor, at any time by choosing File|Save or by pressing Ctrl+S. If there

have been no changes since the current file was last saved or run the Save

option will be greyed out in the File menu.

If more than one file has been changed you can choose File|Save All or

click the Save All button .

If you ever exit NetBeans with unsaved changes you will be prompted to

save them.

Where are my files?

When you created a project called FirstProject in the project location

Documents\NBGuide2, NetBeans automatically created a folder

Documents\NBGuide2\FirstProject to house the project files.

Within this folder there will be a number of subfolders, most of which we

do not need to be concerned about. All you need to know is that:

. Java source files are stored within a special src subfolder, which in this

case will be Documents\NBGuide2\FirstProject\src

\firstproject

. Compiled class files are placed within a special build\classes

subfolder, which in this case will be Documents\NBGuide2

\FirstProject\build\classes\firstproject.

NetBeans Guide

30

Black plate (31,1)

Renaming, moving, copying or deleting a project

NetBeans lets you rename, move, copy and delete projects directly from the

Projects window. Simply right-click on the project node and select the

action you require. In the dialogue that appears supply any necessary details,

then confirm the action or cancel it.

If you rename a project there is a checkbox that facilitates renaming of the

corresponding project folder. If you delete a project there is a checkbox that

facilitates deletion of the corresponding sources.

If you like you can experiment with renaming, moving or copying

FirstProject, but don’t delete it. Deleting a project is irreversible and

FirstProject is needed again in the next activity!

Summary of activity

In this activity you have learnt how to create a new project, how to use the

Source Editor and code completion, how to save your work, where your

project files can be found in the Windows folder structure and how to

rename, move, copy and delete projects if required.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.4 Adding a new class and using the Source
Editor

Activity 4

In this activity you will learn how to:

. reopen a recent project

. set a project as the main project

. add a new class to a project

. reformat code

. add variables and methods to a class

. encapsulate a variable

. rename a variable, method, class or package

. delete a variable, method, class or package.

Reopening a project

Launch NetBeans if it is not already running and close any projects that are

open in the Projects window.

Any project can be opened by choosing File|Open Project…. However,

NetBeans also maintains a list of projects you have been working with

recently. File|Open Recent Project will present a dropdown list of projects

to choose from. This is useful because it saves having to navigate to the

project folder.

31

3 A trip round NetBeans

Black plate (32,1)

Reopen FirstProject using Open Recent Project. (If for any reason

FirstProject is not in the list offered by Open Recent Project then

open it using File|Open Project....)

Setting a project as the main project

NetBeans allows more than one project to be open at once. If we press F6

or click the button to run a project NetBeans uses the following rules to

decide which of them to run.

. If there is a main project set then that project is run.

. Otherwise if a project is selected in the Projects window NetBeans runs

that.

. Otherwise NetBeans runs the project at the top of the list in the Projects

window, i.e. the project whose name is first in alphabetical order.

If we intend to run a project over and over again it may be convenient to set

it as the main one. When a project is reopened using File|Open Recent

Project it is not automatically made the main project. To set

FirstProject as the main project, choose Run|Set Main Project|

FirstProject.

Alternatively you can right-click on the project node in the Projects window

and select Set as Main Project. When a project is the main one its name is

shown in bold in the Projects window.

Adding a new class

Now we will add a new class to FirstProject. The new class will be

named Account and have two instance variables representing the name of

the account holder and the current balance.

Choose File|New File… (or click the New File button on the toolbar, or

press Ctrl+N). The New File wizard appears (Figure 3.28). Highlighting an

item under Categories: gives a selection of file types to choose from.

Highlighting an item under File Types: results in a few details about the

item being displayed in the Description: pane.

NetBeans Guide

32

Black plate (33,1)

Figure 3.28 The New File wizard

Make sure Java is highlighted under Categories: and Java Class is

highlighted under File Types: .

Press Return or click Next >. This brings up the New Java Class window

(Figure 3.29).

Figure 3.29 Creating a new Java class

Set the Class Name: as Account and select the name firstproject

from the Package: dropdown menu, to give the situation shown in

Figure 3.30.

33

3 A trip round NetBeans

Black plate (34,1)

Figure 3.30 Setting the class name and package

Press Return or click Finish. The new class will appear in the Projects

window and the Source Editor will open automatically to show a class

outline (Figure 3.31). (If the line numbers are not visible right-click in the

left-hand margin of the Source Editor and choose Show Line Numbers.)

Figure 3.31 A new class

Code folding

Each block in a class, including all comment blocks, and the bodies of

constructors and methods, can be individually collapsed if desired, so you

can hide the parts of the code you are not currently working on. This lets

you concentrate on the sections you are interested in and avoids too much

scrolling up and down in the Source Editor. It also gives a handy ‘bird’s-

eye’ view of the code.

NetBeans Guide

34

Black plate (35,1)

You can either click the icons in the Source Editor or, with the cursor

within the block, select View|Code Folds|Collapse Fold. Clicking the

icons or choosing View|Code Folds|Expand Fold has the opposite effect.

Figure 3.32 shows Account with all comment and code blocks collapsed.

Figure 3.32 Collapsed blocks

Formatting your code

You may have noticed that in Figure 3.32 the opening brace is on the same

line as the class name, contrary to the formatting rules we set. If you click

inside the Source Editor and either right click then choose Format, or press

Alt+Shift+F, the code will be formatted according to the options we have

set. This is a very useful feature because the formatting is often affected

when we edit the code, particularly if we paste in code we have copied from

elsewhere, and Alt+Shift+F lets us reformat easily at any point.

Adding variables and methods

You will now add the two instance variables to the new class.

Make sure Account is open in the Source Editor. Press Ctrl+7 if necessary

to open the Navigator window. In the Projects window select the node for

Account. A view of the class members for Account should now be

visible in the Navigator window.

In the Java code in the Source Editor click just to the right of the opening

brace, then press Return. Notice NetBeans automatically adds an indent.

35

3 A trip round NetBeans

You can also open the

Navigator by selecting

Window|Navigating|

Navigator.

Black plate (36,1)

Type

private String holder;

You will see that the new variable is displayed in the Navigator window as

you type.

Next you will add accessor methods for the new variable. It is perfectly

possible to simply type these methods into the source code using the editor;

however NetBeans offers a simpler route. In the Java code right-click on the

variable name holder and choose Refactor|Encapsulate Fields.... The

Encapsulate Fields dialogue now appears (Figure 3.33) inviting us to

create a getter and setter for the variable (which NetBeans refers to as a

field).

Figure 3.33 Encapsulating a field

Untick the checkbox Use Accessors Even When Field is Accessible.

Accept the other defaults provided, so that everything is as shown in

Figure 3.33, and click Refactor. If you now scroll down the Source Editor

you will find that NetBeans has automatically inserted a pair of accessor

methods into the code for us, complete with Javadoc comments! The new

methods also appear in the Navigator (Figure 3.34).

NetBeans Guide

36

Black plate (37,1)

Figure 3.34 Automatically generated accessors

Now add a second encapsulated instance variable private int balance

– that is, first create the variable and then add a getter and setter as

described above.

Inserting code

In the Source Editor, right-click in the body of the Account class

immediately after the line where the variable balance is declared and

choose Insert Code…|Constructor…. In the Generate Constructor

dialogue, tick the checkboxes for both variables and click Generate.

A constructor is automatically added.

Next add (by typing into the body of the Account class in the Source

Editor) a method credit(int), which adds an integer amount to the

balance, as follows:

public void credit(int amount)

{

setBalance(getBalance() + amount);

}

The class should now appear as follows (Figure 3.35).

37

3 A trip round NetBeans

You can also add getter

and setter methods by

right-clicking in the

source code, choosing

Insert Code…|Getter

and Setter…, then

ticking the variables you

want to include and

selecting Generate.

Black plate (38,1)

Figure 3.35 The class Account

Trying out the new class

Now switch to the Source Editor for Main.java, by double-clicking on the

corresponding node in the Projects window. In the main() method remove

the System.out.println statement you entered in Activity 3, and then

type the following code, which will instantiate an account, set its holder to

"Mr Thrifty", set the balance to 100, credit the account with 200, then

print out the name and balance using the getters.

Account acc1 = new Account("Mr Thrifty", 100);

acc1.credit(200);

System.out.println("The account holder is "

+ acc1.getHolder()

+ " and the balance is "

+ acc1.getBalance());

As mentioned previously, typing a period after a variable name brings up a

code completion box – methods that may be invoked or variables that can be

accessed. If the related Javadoc is found it will be displayed as well,

otherwise a message appears saying it is not available.

As we’ve seen code completion is a useful labour-saving device and in

addition it helps us remember what methods can be invoked on the variable

and what arguments they require. Pressing Return or double-clicking an

item automatically adds it to the code. This helps us avoid mistyping names,

a common source of programming errors.

If your code needs reformatting at any point remember you can do this by

typing Alt+Shift+F.

When you have finished adding the code, run the project.

NetBeans Guide

38

If the code completion

box does not appear after

a few seconds, you can

open it manually by

pressing Ctrl+Spacebar.

Black plate (39,1)

All being well you should obtain a window that looks something like

Figure 3.36.

Figure 3.36 The NetBeans IDE after successful running of FirstProject

Renaming a method

Suppose you change your mind about what to call a method. In the Java

code for the class Account shown in the Source Editor right-click on the

name getBalance and choose Refactor|Rename… or alternatively click

on getBalance and press Ctrl+R.

In the dialogue set the name to getCurrentBalance. Notice that there is

an option to also apply renaming in comments. Click Refactor. The method

is now renamed everywhere: in the class Account where it is defined, in

the Navigator, and in the main() method where it is invoked.

Now run FirstProject. The modified project should recompile and run

without a hitch!

39

3 A trip round NetBeans

Notice that as you enter

a line of code NetBeans

displays an exclamation

mark icon in the left-

hand margin while the

code is incomplete or

incorrect.

Sometimes the NetBeans

editor can offer a hint

about how to correct the

code, in which case a

lightbulb icon is

displayed instead.

You will learn more

about editor hints in

Activity 5

Black plate (40,1)

Renaming a variable, class or package

We can also rename a variable, class or package, by following precisely the

same steps as we used to rename a method. As before, right-click on the

name in the Source Editor, and choose Refactor|Rename… or simply select

the element and press Ctrl+R.

If you rename a class in this way NetBeans will automatically rename the

constructor(s) as well.

You can also rename a class or package from the Projects window, by right-

clicking on it and choosing Refactor|Rename… as before.

Removing a class or package

A class or package can be deleted from the Projects window. Click on the

corresponding node and press the Delete key, or right-click on the node and

choose Delete. There is no need to tick the Safely delete option, which is

designed for situations where a class or package is referred to in other

projects.

Revert Deleted

What if you delete a class or package and then change your mind? Luckily

NetBeans can come to the rescue. In the Projects window simply right-click

on the node for the project and choose Local History|Revert Deleted.

Summary of activity

In this activity you have learnt how to reopen a recent project and how to

set a project as the main one; how to add fields (instance variables) and

methods to a recently created class; how to reformat code; how to

encapsulate variables automatically and how to rename or delete variables,

methods, classes or packages.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.5 Using ‘smart’ features in the Source Editor

Activity 5

In this activity you will learn more about the assistance the Source Editor

provides to programmers, including

. bracket completion

. margin icons

. editor hints

. fixing imports

. abbreviations

. toggling comments.

NetBeans Guide

40

Black plate (41,1)

Investigating the Source Editor

Launch NetBeans if it is not already running. If you have any projects

currently open in the Projects window close them before proceeding.

Select File|Open Project... or press Ctrl+Shift+O.

In the Open Project dialogue navigate to the folder Documents

\NBGuide2 and open the project named EditorDemo. In the Projects

window expand the project and double-click on the class Main to open it in

the Source Editor.

At present the main method presents the user with a confirm dialogue and

assigns the result to the variable answer but does not do anything further

with it. The code of the method is as follows:

public static void main(String[] args)

{

int ok = JOptionPane.OK_OPTION;

int answer = JOptionPane.showConfirmDialog

(null, "Do you want to wait?");

}

In the subsections below you will experiment with a few of the

programming aids provided by the editor. Although these are just a small

subset of what is possible these are the features we have found most useful.

Bracket completion

Immediately following the line

int answer = JOptionPane.showConfirmDialog

(null, "Do you want to wait?");

type

if (

NetBeans automatically inserts the closing bracket and positions the cursor

to enter the condition. Type the condition answer == ok inside the

brackets.

On the next line type an opening brace { and press Return. NetBeans

automatically supplies the closing brace.

Margin icons

In the body of the if statement you have just created enter the following

lines

41

3 A trip round NetBeans

You are not required to

understand this code in

detail.

Many more features are

available from the

Source and Refactor

menus but unfortunately

we don’t have enough

space to describe them

all.

Black plate (42,1)

TimeUnit.SECONDS.sleep(2);

System.out.println("Time's up!");

You will now see a special icon has appeared in the left-hand margin of

the Source Editor. These margin icons give extra information about that line

of code; for example, there is a special symbol that tells us when we have

declared a method that overrides an inherited one. If you allow the mouse

pointer to hover over a margin icon, a pop-up message will tell you what it

means. In this case it tells us ‘package TimeUnit does not exist’.

Editor Hints

If an icon indicates an error, as this one does, the Source Editor can often

give a hint about how to resolve the problem.

Click on the line concerned to select it, then press Alt+Return. A light bulb

icon pops up with the suggestion ‘Add import for java.util.concurrent.

TimeUnit’. However we don’t need to do this for ourselves. Simply click on

the suggestion and NetBeans will automatically add the import statement

import java.util.concurrent.TimeUnit; above the beginning of

the class code.

Once the import has been added it turns out that there is a second problem!

The margin icon is still there and this time if you hover over it the message

is ‘unreported exception java.lang.InterruptedException; must be

caught or declared to be thrown’.

If you select the line again and once more press Alt+Return, you now get a

list of three suggestions. Click ‘Surround Statement with try-catch’ and

the appropriate try-catch block is inserted.

If you accept an Editor Hint and then decide that it’s not what you want

after all, you can simply type Ctrl+Z (or use the Undo button) and the

inserted code will be removed again. Type Ctrl+Z and you will see the

try-catch block is removed again.

Re-insert the try-catch block. You will notice that NetBeans is now

suggesting a hint for the line

ex.printStackTrace();

Selecting this line and typing Alt+Return brings up a hint ‘Throwable

printStackTrace() should be removed’. NetBeans thinks this may be a

temporary debugging statement that should be removed or replaced by

something different in the final version. You should disable this hint by

clicking the arrow to the right of the hint and accepting the option to

Disable “Print Stack Trace” Hint.

Note that Editor Hints will not appear for all categories of error. If you do

not see a light bulb icon after clicking on the line containing the error it

means that no hint is available in this case.

As well as generating hints for errors the editor offers other kinds of

suggestions, not all equally useful. For instance, if you highlight any code

the light bulb appears with the suggestion that the code be enclosed in an

NetBeans Guide

42

You will learn more

about the role of import

statements in Section 4.

Black plate (43,1)

‘editor fold’ so it can be collapsed, but, given that all code blocks can be

collapsed anyway and we don’t often want to collapse a smaller section, this

has only limited use.

Fix imports

We saw above that NetBeans can add imports for us. In fact rather than

having to decide what classes need to be imported, when in the Source

Editor you can select Source|Fix Imports… or press Ctrl+Shift+I at any

time. NetBeans will then add import statements for any required classes, as

long as it can locate them in the standard libraries, or any other libraries or

projects that have been added to the current project. If there is more than

one class with the same name as the one that needs importing, NetBeans

shows the options in a dropdown box for you to choose which one is right.

Try deleting the import that was inserted earlier, and then type Ctrl+Shift+I

to see that the correct import is added again.

This is a feature of exceptional usefulness which programmers use

constantly, calling upon it at regular intervals, because keeping track of all

the imports needed for more complex projects can be very difficult.

Fix Imports does not merely add required imports; if you alter the code so

that an import becomes redundant then Ctrl+Shift+I will remove it again!

Abbreviations

NetBeans supports a number of predefined ‘code templates’ – abbreviations

which are expanded automatically to common idioms like public static

final int when Shift+Space is pressed. It is even possible to add your

own.

To see a particularly useful example, place the cursor on the line following

the closing brace of the if statement and type

sout

followed by Shift+Space. Insert a message of your choice!

Comment toggling

We often want to comment out sections of code when modifying or

debugging a program.

If you highlight a block of code and press Ctrl+/ you will finds NetBeans

automatically inserts // before each line, commenting it out.

This toggles on and off, so that selecting commented lines and typing Ctrl+/

will uncomment the code again.

Summary of activity

In this activity you have learnt about some of the ‘smart features’ of the

Source Editor that can help programmers, including the use of editor hints,

the fix imports feature, an especially useful abbreviation, and how to

comment and uncomment sections of code.

43

3 A trip round NetBeans

Black plate (44,1)

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.6 Creating a project using existing source code

Activity 6

Sometimes you might be supplied with a Java program consisting of just the

source files. Imagine, for example, that a friend who does not use NetBeans

wants to share with you the workings of a program they have written. Since

they cannot send a NetBeans project the natural thing to do is send you the

source files and let you build your own project around them. This activity

shows how you can do that.

In this activity you will learn how to:

. create a project that uses existing source code files

. create copies of source files

. generate and view Javadoc for this or any other project.

Creating a project that uses existing source code files

Launch NetBeans if it is not already running. First make sure you have

closed any open projects.

Choose File|New Project... or do Ctrl+Shift+N. When the New Project

wizard appears, under Categories: select Java and under Projects: select

Java Project with Existing Sources. Click Next >.

In the New Java Project with Existing Sources window, name the project

SecondProject and make sure that Set as Main Project is ticked and

Documents\NBGuide2\SecondProject is the location for the project

folder. Leave the other options unchanged and click Next > or press Return.

You will now be asked to locate the source folder. Click on the button Add

Folder... next to Source Package Folders: and navigate to Documents

\NBGuide2. Highlight the folder Colours and click Open.

The wizard should now appear as in Figure 3.37.

NetBeans Guide

44

Black plate (45,1)

Figure 3.37 The New Java Project with Existing Sources wizard

Click Finish. The new project will be created and will automatically become

the main one. Do not run the project yet. Before going any further we are

going to make a copy of the original source code.

Copying the source files

Creating a project with existing sources does not automatically make copies

of the files concerned – we are still operating with the originals and any

editing we do will affect them. Usually this is not something we want to

happen, so below we will explain how to keep the originals intact.

To preserve an original file unchanged we need to make a copy of it. In the

Projects window expand the node SecondProject, then the node Source

Packages and finally the package node spectrum, which contains a single

class Colours.

Right-click on the node Colours.java and select Copy from the dropdown

menu. This copies the source file.

Now right-click on the package node spectrum and choose Paste|Refactor

Copy…. In the Copy Class dialogue set the New Name: as ColoursTwo

and click Refactor.

NetBeans will create a clone of the original source file, with the chosen

name ColoursTwo. The package will now contain two files, as shown in

Figure 3.38.

45

3 A trip round NetBeans

Alternatively you can

select the Colours.java

node and press Ctrl+C,

then select the package

node spectrum and

press Ctrl+V.

Black plate (46,1)

Figure 3.38 A source file has been cloned

The clone is completely independent and you can edit it as much as you like

without affecting the original.

Now run the program. When you are invited to choose the main class

(Figure 3.39) make sure to choose the copy.

Figure 3.39 Setting the clone as the main class

The program should now run using the copied class. To stop the program

close the window.

Before carrying on to the next task you need to delete the clone

ColoursTwo. Right-click on the node concerned and choose Delete, or

select the node and press the Delete key. When the dialogue box appears,

NetBeans Guide

46

Black plate (47,1)

asking you to confirm deletion of the class, click OK or press Return. You

do not need to tick the Safely delete box.

Generating and viewing project Javadoc

From the Run menu choose Generate Javadoc (SecondProject). In the

Output window you will see a warning:

Warning: Leaving out empty argument '-windowtitle'

Ignore this. After a few seconds you should see a message saying the build

was successful (you may have to scroll up or down the Output window to

see this).

The browser should now be launched automatically and the Javadoc

displayed, as in Figure 3.40. Depending on your browser settings you may

receive a security warning – this may be ignored.

Figure 3.40 The project Javadoc displayed in a browser

After generating the Javadoc for a project, the project documentation will be

accessible from the list available through Help|Javadoc References and

also by right-clicking the class name in the Source Editor and choosing

Show Javadoc.

Where are the Javadoc files?

Close the browser that was opened when you generated the Javadoc and,

within NetBeans, select Window|Files or click on the Files tab to bring the

Files window to the fore. The Files window presents an expanding tree

view of the folder structure of the project and the files contained in the

folders. If you expand the node SecondProject (not the one labelled

SecondProject – Source Packages) you will find it contains a number of

folders and files. We shall not be concerned with the majority of these.

Many of them are used by NetBeans to hold details of the project and how it

should be compiled or run. However, we shall just look inside one folder to

locate our Javadoc files.

To locate the Javadoc that has just been generated, expand the folder dist.

Inside that expand the folder javadoc. This reveals an extensive set of

HTML files, which contain the Javadoc for SecondProject.

47

3 A trip round NetBeans

Another way to generate

the documentation is to

right-click on

SecondProject in the

Projects window and

select Generate

Javadoc.

Black plate (48,1)

Any HTML file in NetBeans can be viewed in a web browser by right-

clicking on the file in the Files or Projects window and choosing View

from the menu. Right-clicking on the one named index.html and

selecting View will display the Javadoc for the class as before.

Summary of activity

In this activity you have learnt how to create a project using existing source

code, how to clone source files and how to create and view the Javadoc for a

project.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.7 More on running projects

Activity 7

In this activity you will learn how to:

. set command-line arguments

. set the main class to a different choice

. run single files

. use some simple error-location aids.

Setting command-line arguments

When a Java program is executed it is possible to pass it some initial

information in the form of a command-line argument.

Launch NetBeans if it is not already running. Close any projects already

open.

Open the project Documents\NBGuide2\CommandLineTest. This

project contains a single class with a main method that prints out an array

of strings passed to the method as a command-line argument. Right-click on

the node for the project and choose Properties. In the tree view on the left,

click Run (Figure 3.41).

NetBeans Guide

48

If you accidentally select

Open instead of View

the file will not be

displayed in the browser.

Instead the actual HTML

will be displayed in the

Source Editor, which is

not what we want at all.

Black plate (49,1)

Figure 3.41 A command-line argument has been entered

In the Arguments: field enter a short phrase of your choice, avoiding

quotation marks. Make sure the Main Class: is set as shown and click OK.

Now run the project. Your phrase will become the command-line argument

to the method and whatever you entered will be printed in the Output

window.

Setting the main class

The Project Properties dialogue also lets us specify the main class for a

project – either you can enter the name of the class in the Main Class: field

(see Figure 3.41) or, if the class is in the project’s Source Packages folder,

you can browse to it. If the main class is in a package, its name must be

qualified by the package name. In Figure 3.41 you see that the main class is

already set as Main, in package commandlinetest.

Running files from the Projects window

To run a single source file, right-click on the relevant node in the Projects

window and then choose Run File from the menu. Alternatively you can

select the node and press Shift+F6. This is often handy if you have more

than one class with a main method, perhaps for testing purposes, and you

do not want to keep resetting the main class.

Note that if you run a file on its own any command-line argument you have

set for the project will have no effect. Command-line arguments are passed

to the main method only when you run the entire project. If you expand

CommandLineTest in the Projects window and run the single file Main.

java in the way described above you will find your message is no longer

displayed.

Locating errors

You saw in Activity 5 that when NetBeans identifies an error it draws

attention to it and provides information about the nature of the error. We will

now explore further how NetBeans can help us pinpoint the location of

errors and correct them.

49

3 A trip round NetBeans

Black plate (50,1)

In the the project CommandLineTest that we used above double-click on

the node for Main.java to open the class in the Source Editor. Alter the

line that reads

for (String item : args)

to become

for (Sring item: args)

After a few seconds you will see the expected margin icon appear, and

when the mouse pointer is over the icon (or the symbol Sring, which is

highlighted in the Source Editor) the pop-up message tells us that the

symbol Sring cannot be found (Figure 3.42). This is a semantic error; the

code refers to a class that does not exist.

Figure 3.42 NetBeans flags an error

NetBeans will also inform us about the error if we try to run the project.

Run the project and you will see the following message (Figure 3.43).

Figure 3.43 A compilation error!

Click Run Anyway and the following will appear in the Output window:

NetBeans Guide

50

Black plate (51,1)

Exception in thread "main" java.lang.RuntimeException:

Uncompilable source code - cannot find symbol

symbol: class Sring

location: class commandlinetest.Main

at commandlinetest.Main.main(Main.java:21)

Java Result: 1

BUILD SUCCESSFUL (total time: 1 minute 18 seconds)

Clicking on the underlined link Main.java:21 causes line 21, which

contains the error, to be highlighted in the Source Editor (Figure 3.44).

Figure 3.44 Highlighting an error

This ability to pinpoint the line responsible for an error is an absolutely

invaluable debugging tool. The example above concerned a compile-time

error, but equally if the code compiles successfully and a run-time error then

throws an unexpected exception, the information NetBeans provides in the

Output window will allow us to locate which line in our program triggered

the failure.

Now change Sring back to String to correct the error. You should see

the margin icon and highlighting disappear.

51

3 A trip round NetBeans

Black plate (52,1)

Next remove the semicolon at the end of line 23. A warning icon appears

and when the mouse pointer is over it, or the problematical line, you will

find that NetBeans correctly diagnoses the error:

';' expected

This is a syntax error; the grammatical rules of Java have been violated.

Reinstate the semicolon and the margin icon will vanish.

Oh, and what would have happened if you had used Alt+Return to get an

Editor Hint for the mistyped Sring? Well, NetBeans suggests we create a

local variable Sring and if we accept the suggestion then a different

problem is created. So while the Editor Hints are extremely useful, they are

certainly not infallible!

Summary of activity

In this activity you have learnt how to set command-line arguments, how to

set the main class, how a file can be run on its own, and about some simple

facilities that NetBeans offers for locating program errors.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

3.8 Adding a class library to a project

Activity 8

In this activity you will learn how to add a class library to your project, so

the project can access a package it requires.

This is something that is often needed. For example, a project may depend

on a package you have written for another project. A module activity may

require classes not part of the core Java libraries. Or you may want your

project to include a package from one of the many third-party Java APIs that

exist to extend the capabilities of Java in various ways.

Launch NetBeans if it is not already running. Close any open projects, then

open the project Documents\NBGuide2\LibraryTest. Expand the

project and open the class Main.

Reading this class, you will see that it contains a statement that imports a

class Sorter from a package alphabetize and then invokes a class

method sortChars() on Sorter.

The method accepts a string argument and returns a string containing the

letters that occur in the original, but with any duplicate occurrences of a

letter removed, and with the letters arranged in alphabetical order.

This might be of interest to someone who likes word puzzles. For the string

in our Main class the value produced would be

‘abcdefghijklmnopqrstuvwxyz’, because the original ‘The quick

brown fox jumped over the lazy dogs’ is a pangram, which

contains every letter of the English alphabet at least once.

NetBeans Guide

52

Black plate (53,1)

However, what we’re interested in is that NetBeans is warning of two errors

in the program, and if we let the mouse hover over the icons we find

‘package alphabetize does not exist’ and ‘cannot find symbol symbol:

variable Sorter location: class librarytest.Main’

Why is this? Well, when a class includes an import statement for a package

that is part of the standard Java libraries, such as java.util or

javax.swing for instance, NetBeans will automatically know where to

locate the package so that the classes in it can be imported.

However, the package alphabetize is not part of the standard libraries: it

has been written especially for this guide. As a consequence NetBeans is

unable to import the package for us until we point it to the location where

the package is stored, which is why the compiler is reporting the errors.

A package will normally be stored in a particular type of bundled file called

a JAR (from Java Archive) with a file extension .jar. In our case the file

is Alphabet Utilities.jar and we need to tell NetBeans where it can

be found.

In the Projects window, right-click on the node named Libraries and choose

Add JAR/Folder... (Figure 3.45).

Figure 3.45 Adding a JAR

You will then be invited to navigate to the folder where the JAR is located.

The required file is alphabet-utilities.jar in the folder

Documents\NBGuide2\AlphabetUtilities\dist. In the Add

JAR/Folder dialogue select alphabet-utilities.jar and click

Open.

If you now expand the node Libraries in the Projects window, the JAR you

have added will be shown (as a jar!). The other library shown is the JDK,

which was automatically part of the project (Figure 3.46).

Figure 3.46 Alphabet Utilities.jar in Libraries

Now we have added the JAR, the warnings in the Source Editor window

will have disappeared and the program will compile and run successfully to

produce the expected output.

53

3 A trip round NetBeans

Black plate (54,1)

If you were following this procedure to add a JAR from another project you

had written, you would have to check where the project folder was first.

Provided that the project had been compiled, you would then find a JAR in

the subfolder \dist.

If a third-party product were involved you would save the product to a

known location and then locate the JAR somewhere within its folder. This is

not normally difficult to do. In Windows the standard icon for a JAR is .

Adding the JAR should also have added the documentation for the package

alphabetize to the LibraryTest project. If you choose Help|Javadoc

References|alphabetize a browser will open and you can read the Javadoc.

Summary of activity

In this activity you have learnt how to add a non-standard class library to a

project and how to view the associated Javadoc.

You can now exit the IDE because the next section of the guide is for

reading only.

NetBeans Guide

54

Black plate (55,1)

4 Working with packages

4.1 About packages

Java classes are normally bundled into units called packages. As well as

providing a convenient way of organising classes, packages are important for

two other reasons.

. They are part of Java’s access control mechanism. If a class, variable or

method has no access modifier (private, protected or public)

specified, then it will be accessible from everywhere in the same package

but from nowhere else.

. Classes with the same name but from different packages are different as

far as Java is concerned. This means that if, by coincidence, two

programmers each write a class with the same name there will be no

confusion, as long as they are working within distinct packages.

The package in which a class is placed is determined by a package

statement, which must come before any other statement in the class

declaration, including imports. For example, here is a package statement

placing the class PetDog in package pet:

package pet;

// any import statements go here

public class PetDog

{

// rest of class

If you do not include a package statement in a class, Java will place it in the

default package, a special package with no name. However, using the

default package is suitable only for small experimental programs: in

general you should place your classes in named packages and that is what

we strongly recommend.

NetBeans makes it easy for us to organise our classes into packages, and to

manage the packages we create. All you will need to do most of the time is

follow the advice below.

4.2 Creating a package

New projects

If we create a new project with Create Main Class ticked, NetBeans

automatically places source files in a package it creates for us. This package

has the same name as the project but all in lowercase letters (all lowercase is

the Java convention for package names), and a package statement is

automatically added to Main and any other classes we write later. The

package will appear as a node in the Projects window – see Figure 4.1.

55

4 Working with packages

Remember that to create

a project with a main

class the Create Main

Class box must be

ticked in the New Java

Application window –

see Figure 3.23 in

Activity 3.

Black plate (56,1)

Figure 4.1 A package sampleproject in the project SampleProject

Unless we specify otherwise, any new classes we add to the project will then

automatically be assigned to the same package. This results in a simple and

convenient package structure, so we recommend always ticking Create

Main Class; if the main class is not required later on it can simply be

deleted.

The default package

If Create Main Class is not ticked the project will have only a default

package (Figure 4.2). This is not recommended, because unless you go on to

create a new package, any classes added to the project will simply be placed

in this default package, potentially causing problems with naming or access.

Figure 4.2 shows how a default package would appear in the Projects

window.

Figure 4.2 A project with only a default package

Adding a new package to a project

A new package can be added to a project by selecting the project or Source

Packages node in the Projects window, right-clicking and choosing New|

Java Package....

4.3 How a class can use a class from another
package

A class will automatically know about other classes that are housed in the

same package. If we want to use classes from a different package, we must

tell Java what package to look in. There are two ways to do this:

. use an import statement

. give the full name of the class including the package name.

Using an import statement

Suppose the class PetDog in the package pet needs to use the class

Collar in package petaccessory. Then we put an import statement

NetBeans Guide

56

Black plate (57,1)

import petaccessory.Collar;

in PetDog. This import must come after the package statement but before

the first line of the class declaration, like this:

package pet;

import petaccessory.Collar;

public class PetDog

{

// rest of class

We can also use a wildcard import, which is useful if we need several

classes from the same package. The statement

import petaccessory.*;

will automatically import whatever classes are required from the

petaccessory package, without our needing to specify them individually.

Once a class has been imported we can just refer to it by using its name, for

example:

Collar diamond = new Collar();

For an import statement to be possible, NetBeans must know the location of

the package you want to import from.

If it is part of the Java standard libraries or belongs to the same NetBeans

project, the import will be possible without doing anything special.

If the package is anywhere else then you will need to follow the steps in

Activity 8 to add the JAR containing the package to the current project.

Once NetBeans knows the location of the package it will automatically add

the required imports to the current class if you type Ctrl+Shift+I, or right-

click in the Source Editor and choose Fix Imports, as we saw in Activity 5.

Giving the full class name

The second approach is to use the full name of the class, including the name

of the package where it can be found, whenever we need to refer to it, e.g.:

petaccessory.Collar sapphire =

new petaccessory.Collar();

Obviously if we use the class several times this is likely to get tedious and

an import will be preferable.

4.4 Renaming a package

As noted earlier in Activity 4, NetBeans lets us rename a package (as long

as it is not the default package). This can come in handy if we change our

mind or if we accidentally type the package name wrongly. With the node

57

4 Working with packages

Black plate (58,1)

that represents the package selected in the Projects window, right-click and

choose Refactor|Rename.... (Alternatively, highlight the node and press

Ctrl+R.) Type a new name and press Refactor.

4.5 Package hierarchies

If Java classes Collar, Lead and Bowl are all located in a package called

petaccessory, then the corresponding files will be in a folder called

petaccessory. In other words, the folder structure will reflect the

package structure.

It is possible for packages to be nested hierarchically. For example, there

could be a package called petaccessory.petfood. In that case each

class belonging to this package would contain a package declaration

package petaccessory.petfood;

The classes of petaccessory.petfood would be located in a folder

called petfood, which would be inside the folder called petaccessory

(Figure 4.3).

Figure 4.3 The folder structure will reflect the package structure

Of course this is all relative to the base directory where the source files for

the project are stored.

NetBeans Guide

58

Black plate (59,1)

To import classes from petaccessory.petfood into a class in another

package we could use the statement:

import petaccessory.petfood.*;

Note that the wildcard applies only to classes, not to packages. A statement

such as

import petaccessory.*.*;

will not work.

4.6 Moving classes between packages

Classes can be readily moved between packages by using direct

manipulation in the Projects window. You can drag a file and drop it into

another package. This automatically brings up a Move Class dialogue.

When you click Refactor in this dialogue the class will automatically be

provided with an appropriate package statement for the new location.

Alternatively you can right-click on a node, select Cut or Copy, then click

on the node for a different package, right-click again and choose Paste|

Refactor Move or Paste|Refactor Copy as appropriate. In the Move

Class or Copy Class dialogue you can now rename the class if you wish

before clicking Refactor. As before the class will be provided with the

appropriate package statement.

4.7 Moving classes and packages between
projects

As well as moving files from package to package within the same project we

can also move or copy them to a package in any other project we have open,

just as described above.

We can also move or copy an entire package between projects. Drag the

package from the first project and drop it on to the Source Packages node

for the second project, or right-click on the package, choose Cut or Copy,

then right-click on the Source Packages node of the destination project

and choose Paste.

4.8 Other file types in packages

Programs very often have files of various kinds associated with them, for

example HTML, XML or image files. NetBeans allows any file type to be

housed in a package and they can all be copied or moved between packages

in a similar way to that described above, the only difference being that if a

file does not represent a Java class no Move Class or Copy Class dialogue

will appear.

59

4 Working with packages

Black plate (60,1)

5 Using the NetBeans GUI Builder

NetBeans provides powerful facilities, referred to as the NetBeans GUI

Builder, for the on-screen design of graphical user interfaces (GUIs). In this

section we explain how to get started on the design of a simple interface,

using this GUI Builder.

We are going to create a simple window that simulates a light bulb that can

be switched on and off. The window will have a panel at the top, with two

buttons On and Off. In the centre of the window a label will appear that

plays the part of the light bulb. Initially the light is off and the label is

coloured grey (Figure 5.1).

Figure 5.1 The window with the label coloured grey

When the On button is clicked, the light bulb changes its colour to yellow

(Figure 5.2).

Figure 5.2 The window with the label coloured yellow

When the Off button is clicked the light bulb goes back to grey again.

A Java GUI has three aspects:

1 A window that contains all the various visual components that the GUI

uses.

2 The visual components themselves. These can be of many different types:

panels, buttons, menus, labels, text fields and scroll bars are some

common ones. These components are all laid on the window that

contains them. Depending on their type, some components can be nested

inside other components.

3 Event listeners and handlers. Visual components are inert until we define

how they are to behave when the user interacts with them using the

mouse or keyboard. To this end we attach event listeners to components

and write event handler code for each event of interest. When an event

takes place – for example, the user may click on a button – the listener

NetBeans Guide

60

Black plate (61,1)

detects this and the corresponding handler code is invoked, so that the

program responds appropriately to the event.

In Activities 9 to 11 below you will learn how each of these aspects is dealt

with by the NetBeans GUI Builder.

The visual components we shall use all belong to the Java library known as

Swing. We shall also refer to the Java library known as AWT (Abstract

Windowing Toolkit) which provides various other classes we require.

5.1 Starting the design

Activity 9

In this activity you will learn how to:

. begin the design of a GUI

. set the properties of the GUI window

. test your GUI.

Beginning the design

Launch NetBeans if it is not already running. Close any projects already

open.

Create a new project, choosing Java and Java Application in the New

Project wizard, and call the project GUIDemo, in the project location

Documents\NBGuide2.

Set as Main Project should be ticked and Create Main Class should not

be ticked (Figure 5.3). Press Return or click Finish.

Figure 5.3 Creating a New Java Application for the GUI design

Once the project is created, choose File|New File... or type Ctrl+N and in

the New File wizard select the category Swing GUI Forms. Select the file

type JFrame Form and press Return or click Next >.

61

5 Using the NetBeans GUI Builder

Black plate (62,1)

Figure 5.4 The New File dialogue showing selection of the JFrame Form option

Name the class GuiOne and the package guidemo. Click Finish, or press

Return.

NetBeans will open the GUI Builder, which should look similar to

Figure 5.5.

Figure 5.5 The GUI Builder with the Design view selected

As well as the familiar windows Projects, Files, Navigator etc., the GUI

Builder displays the following new ones:

. At the bottom left (next to the Navigator window), the Inspector.

This provides a logical view of the GUI we are designing, in expanding

tree form. The Inspector shows all the components that will appear in

the user interface, and how the components are nested within one

another. At present there is just Form GuiOne, which represents the

form we are designing, and within Form GuiOne a folder labelled Other

Components and a JFrame object, which is the graphics window

within which our GUI will be built up.

If at any time you accidentally close the Inspector you can reopen it

from the Window menu by choosing Navigating|Inspector.

NetBeans Guide

62

We will not be using the

Other Components

folder, so you can ignore

it, but it is there to hold

any non-visual

components a user

interface might need. For

example, an interface

that displayed a clock

would require a timer

class that actually kept

track of the time.

Black plate (63,1)

. At the top right the Palette.

The Palette displays icons for all the different kinds of visual

components that can be added to a GUI. If you scroll down you will find

these are in seven groups: Swing Containers, Swing Controls, Swing

Menus, Swing Windows, AWT, Beans, and Java Persistence. The

only groups we use in this activity are Swing Containers and Swing

Controls. These two groups should already be open, with a list of Swing

components displayed. If either is not open, click on the icon to

expand it.

If at any time you accidentally close the Palette you can reopen it from

the Window menu by choosing Palette.

Below the Palette you will also see a Properties pane (in Figure 5.5

this is titled [JFrame]-Properties). We will not make use of this

Properties pane as there is a more user-friendly way of accessing these

options, so you can close it to allow more space for the Palette.

. In the centre a tabbed pane titled GuiOne.java.

This has buttons for Source and Design, which allow us to toggle

between an interactive design window and the Source Editor. Initially the

Design view is selected. It represents the GUI window to which we are

going to add Swing components. While the Design view is displayed the

Inspector and Palette are also shown. When we switch to the Source

view the Inspector and Palette are hidden.

In the Design view, below these buttons is a Help Bar where tips are

displayed, for example:

If you find these hints distracting you can click on the to hide them.

. At the bottom you may also see a Tasks and/or an Output window. We

shall not be using either of these so you can close them.

NetBeans has automatically generated the Java code that will create and

display a JFrame. A JFrame is a window with a border, a title bar, an

icon in the top-left corner, and the standard buttons for minimising,

maximising and closing the window. If you click on the button labelled

Source the generated code will appear. If you scroll up and down the code

you will see two sections are shaded grey. One of them is currently folded

but can be expanded by clicking on the icon next to it. These shaded

portions are reserved for NetBeans and cannot be edited in the normal way.

We shall see how they can be changed shortly. Code that is not shaded grey

can be edited in the normal way and later we shall be adding our own Java

statements to the automatically generated code.

After a quick look at the code – there is no need to examine it in detail and

you can safely ignore any bits you do not understand – click the Design

button to go back to the Design view.

63

5 Using the NetBeans GUI Builder

Black plate (64,1)

Setting the JFrame properties

The code generated by NetBeans is complete and runnable, but before trying

it out we will give our GUI window a title and set it to be displayed in the

centre of the screen, instead of the default position (the top left of the

screen).

In the NetBeans GUI Builder the general method of altering the attributes of

a visual component is to open a Properties dialogue for it and modify the

attributes from there. NetBeans then edits the protected source code – the

part shaded grey – to reflect the changes we have made.

In the Inspector window, right-click on the node [JFrame] and choose

Properties. The Properties dialogue for the JFrame opens (Figure 5.6).

Notice the four buttons Properties, Binding, Events and Code along the

top. Clicking these allows us to move between different windows in the

Properties dialogue. Make sure the window selected is Properties, as

shown in Figure 5.6.

Figure 5.6 The Properties window for the JFrame

Locate the title property, which is the second row in the Properties window,

and type Changing a light bulb in the empty box in the right-hand column

(Figure 5.7). Make sure you press Return, which will save this property.

NetBeans Guide

64

Black plate (65,1)

Figure 5.7 Setting the title

Now click on the Code button. For the Form Size Policy select Generate

Resize Code from the dropdown list (Figure 5.8).

Figure 5.8 Setting Generate Resize Code

Click Close to exit the Properties dialogue.

Testing the GUI

We can now test what we have done so far by running the project.

Select Run|Run Main Project or press F6, and when prompted set

guidemo.GuiOne as the main class and click OK.

NetBeans may take a little while to build and run the project but eventually

you should be rewarded by the appearance of a window in the centre of the

computer screen (Figure 5.9).

65

5 Using the NetBeans GUI Builder

The reason for setting

Generate Resize Code

is so that your GUI

window will be

positioned in the centre

of the computer screen.

Black plate (66,1)

Figure 5.9 Our first GUI

Congratulations! You have successfully created a GUI. Even though it does

not do much at present we can now build up the rest of the features step-by-

step.

Closing the window will terminate the program.

As an alternative to running the program, NetBeans offers a Preview

Design facility that will display a quick preview of the GUI. This saves

time because it avoids repeatedly compiling the program. However, the view

obtained is only an indication of what the GUI will look like and may differ

slightly from what you will see when the program is actually executed. You

should also be aware that the Preview Design is purely visual and the

components are not active. For example, even when we have added event

listeners, pressing a button in Preview Design does not produce a signal

telling the program to do anything. For the components to be active you

must run the project.

To test the visual design of the GUI using Preview Design, click the

button that is fifth in the row of buttons beginning with Source and Design.

The Preview Design window can be dismissed by closing it in the usual

way.

Summary of activity

In this activity you have learnt how to create a new GUI form, been

introduced to the Inspector and Palette and seen how to switch back and

forth between the Source and Design views. You learnt how to open a

Properties window on a component and use this to modify the component’s

attributes. Finally you saw how to run a form and how to use the Preview

Design button to get a quick preview of it.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

5.2 Adding Swing components to the GUI

Activity 10

Now you will add the label, the two buttons and finally the panel.

In this activity you will learn:

. how to select visual components and add them to the design

NetBeans Guide

66

Black plate (67,1)

. how the GUI Builder helps us position and size components

. more about changing a component’s properties.

As you go along you can run the project at any point to test what you have

done so far (or you can use the Preview Design button, since at this point

we are only testing the visual design, not how the GUI responds to user

interaction).

Launch NetBeans if it is not already running. Open or reopen the project

GUIDemo from Activity 9.

Adding the label

1 Viewing the Swing components available

In the Swing Containers and Swing Controls sections of the Palette a

large number of common Swing visual components are displayed, together

with their names. You will recognise many of the controls as familiar GUI

widgets. The containers are components whose main purpose is to house

other components, which can if necessary include other containers.

Figure 5.10 Swing visual components

2 Adding a component to the design

Make sure that the Design view is selected. In the Palette window click

once on Label. Move to the Design window and click anywhere. The label

will appear where you clicked, with a default name of jLabel1 and a default

size. Alternatively you can drag and drop components from the Palette to

the Design window.

The component you have added is an object of class JLabel (which is why

the default text the GUI Builder has given is jLabel1). In Swing a

component class is generally identified by the name of the component but

with a ‘J’ in front.

67

5 Using the NetBeans GUI Builder

If the Swing Containers

and Swing Controls

sections are not already

expanded, click the

icon.

If the names of

components are not

currently displayed,

right-click anywhere

inside the window

containing the icons and

choose Show Item

Names.

Black plate (68,1)

Figure 5.11 A JLabel

Notice that when the label is selected it has a rectangular gold border with

selection handles, and also two dotted blue anchor lines, one horizontal, one

vertical (Figure 5.11). These anchors define the position of the component in

relation to the edges of the JFrame.

The label can be resized and repositioned as required. To resize it, place the

mouse pointer over the border or any handle and click and drag.

To reposition it, click in the interior of the rectangle and drag. Notice how

the anchors follow the component around and attach to the nearest edges.

When you resize or reposition a component, it snaps to an invisible grid of

squares each 10 × 10 screen pixels, although you may not notice this very

much when there is only a single widget.

Figure 5.12 The label resized and repositioned

When you added the label to the design, NetBeans automatically added to

the source code all the extra statements necessary to create this component

and add it to the JFrame. An instance variable jLabel1 has been declared

in the variable declaration section near the end of the class definition, and

code to create a new JLabel object and assign it to this variable has been

added to the method initComponents().

If you experiment with altering the size or position of the label in the Design

view, you will find that the changes are automatically reflected in the source

code.

When you have finished experimenting, pick a suitable size for the label and

position it roughly in the centre of the screen. The precise size and location

are not critical.

A node called jLabel1 [JLabel] which represents the new label will now

have appeared in the Inspector window. It is shown as dependent on the

JFrame to which it belongs. If you select a particular component (such as

the JFrame or JLabel) by clicking on it in the Inspector, you should

NetBeans Guide

68

The JFrame itself can

be selected and resized

in a similar way if we

wish.

If you add a component

by mistake and want to

remove it, right-click on

it and select Delete, or

select the component and

press the Delete key.

You can also undo the

last action by typing Ctrl

+Z in the usual way.

When the GUI Builder is

used to add components,

all the auto-generated

declarations are relegated

to a section (which

cannot be edited directly)

at the end of the class

declaration. The idea

here is that the details of

the automatically

generated GUI code

should be effectively

hidden.

Black plate (69,1)

observe that the corresponding component will be selected in the Design

window.

Conversely, selecting a component by clicking on it in the Design window

will cause the corresponding node in the Inspector to appear on a shaded

background, indicating selection.

3 Setting the properties

As we have mentioned, in the GUI Builder the attributes of visual

components are usually set via a Properties window.

In the Inspector right-click on the node jLabel1 [JLabel] and select

Properties. A Properties dialogue will open, similar to the one we opened

earlier for the JFrame. If it is not already selected, click the Properties

button near the top left (Figure 5.13).

Figure 5.13 The Properties dialogue for the label

You are now going to make five changes to the label:

. its colour will be set to a grey shade contrasting with the colour of the
JFrame;

. the font size will be increased;

. the text will be aligned centrally within the label;

. the text will be altered to something more meaningful than jLabel1;

. the label will be made opaque, so the underlying JFrame does not show

through.

Locate the property background, which is the first item in the list. In

Figure 5.13 it has the value [240,240,240], which is the default colour of a

69

5 Using the NetBeans GUI Builder

Black plate (70,1)

component. Click the button next to this. In the colour selector that

appears click the tab AWT Palette, then select lightGray and click OK.

Locate the font property which at present has the value Tahoma 11 Plain.

Click the button next to this. In the font selector that appears choose 14

for the Size and click OK.

Locate the property horizontalAlignment, which at present has the value

LEADING at present. Pull down the list and choose CENTER.

Locate the property text, which at present has the value jLabel1. Delete this

and type light bulb in its place.

The Properties window should now appear as in Figure 5.14.

Figure 5.14 Setting the properties of the label

Underneath the first set of properties you will see another set headed Other

Properties. (If it is closed click the icon to expand it.) Scroll down to

locate opaque (the properties are in alphabetical order) and tick the box

next to it.

4 Renaming the variable

Now click the Code button. In the Code window the second entry is

Variable Name, which is set to jLabel1 at present. This is the variable

name NetBeans has used to refer to the label in the automatically generated

source code. (Do not confuse this with the text displayed in the label!) We

shall change the name to something more meaningful. Delete jLabel1 and

type lightBulb in its place (Figure 5.15).

NetBeans Guide

70

You may see a different

background value from

[240,240,240], do not

worry about this.

Black plate (71,1)

Figure 5.15 Changing the variable name

Click the Close button to dismiss the Properties dialogue. Your ‘light bulb’

should now be displayed in the design window. If necessary, resize it to

accommodate the text. In the Inspector you should now see the name

lightBulb is used in place of the former jLabel1.

So to summarise, the basic steps to go through to add a JLabel and

configure it are as follows.

. Select the component by clicking on the palette.

. Place the component on the design view, reposition and resize it suitably.

. Change the component’s properties where required.

. Replace the default name of the variable with something more

meaningful.

You will now use the same process to add the remaining components to the

design.

Adding the buttons and the panel

5 Adding the buttons

In the Swing Controls section of the Palette click on Button. Now click in

the Design view. The new button will appear (Figure 5.16).

71

5 Using the NetBeans GUI Builder

Black plate (72,1)

Figure 5.16 Adding a button

The JButton will also be represented in the Inspector. Right-clicking on

its node and choosing Properties brings up a Properties dialogue similar to

the ones we opened for the JFrame and the JLabel. (You could

alternatively right-click on the button in the Design and choose Properties.)

In the dialogue that opens, click the Properties button if necessary.

Locate the text property. At present this is set to jButton1. Replace this with

On and press Return to save this property.

In the Design view you should now see the button has been relabelled On.

Click the Code button. In the Code window locate Variable Name and

change the name of the variable to onButton. Click Close.

Now repeat this process to add a second button to the right of the On

button. Notice that grid lines automatically appear to help us line up the

buttons. The anchors define how the second button is positioned relative to

the first and also the location of the pair relative to the edges of the JFrame

(Figure 5.17). However, we don’t need to consider the precise details of this:

as we adjust the buttons NetBeans automatically generates code that

accurately represents the layout displayed in the Design view.

Figure 5.17 Laying out the buttons

This time set the text to Off and the variable name to offButton.

Resize the buttons if necessary so they match and are big enough to

accommodate the text comfortably.

6 Putting the buttons on a panel

The GUI Builder makes it extremely simple to enclose any group of visual

components in one of the Swing containers – components which are

themselves visual components but which exist primarily to house other

components.

NetBeans Guide

72

Black plate (73,1)

In the Design view select both the On and Off buttons. You can either click

and drag, to form a selection rectangle around both of them, or you can hold

down Ctrl and click on each button in turn (this method will also work in

the Inspector).

Once both buttons are selected (they will have gold-coloured borders around

them in the Design view and be highlighted in the Inspector) right-click on

them (either in the Design view or the Inspector) and choose Enclose In,

then Panel. This will automatically create a panel – a rectangular

subcontainer – and place the buttons on it.

Although the panel enclosing the buttons is shown in the Inspector, if you

test the GUI at this point you won’t be able see the panel in the GUI

window, because it is not visually distinguished from the background. You

will now give the panel a border, which will make it visible.

In the Inspector select the node jPanel1 [jPanel], which represents the

panel. You should see a gold rectangle round the panel in the Design

window, indicating it is selected. Right-click on it and choose Properties.

Locate the border property. At present this is set to (No Border). Click the

button next to this and in the border specification dialogue that opens

select Bevel Border (Figure 5.18).

Figure 5.18 Setting a border

Accept the default properties for the border, click OK and then Close to exit

the Properties dialogue. The panel should now have a smart looking bevel

border surrounding it!

We will not bother to change the name of the variable corresponding to the

panel, since in this case no messages will be sent to it and we won’t

therefore need to use the variable name, so the default, jPanel1, is good

enough.

7 More about alignment

Our GUI is quite simple, so we have little need to worry about issues like

lining up components or ensuring they are the same size as one another.

73

5 Using the NetBeans GUI Builder

Black plate (74,1)

However, in a complicated GUI this can be quite hard to do, so the GUI

Builder provides some tools to help with this:

. to align components, select them, right-click and choose Align then pick

the alignment required from the submenu, or press one of the alignment

buttons to the right of the Preview Design button

. to make components the same size, select them, right-click and choose

Same Size, then pick Same Width or Same Height from the submenu.

All being well, your GUI should now have the required components

arranged correctly in the window. However, the buttons are inactive at

present. The next step is to make the program respond when the buttons are

clicked.

We suggest that you run the project at this point, to test that the window,

with label, buttons and enclosing panel, displays correctly.

Summary of activity

In this activity you have learnt how to add visual components to the design,

how to modify their properties, and how to enclose a component in a

container.

You can now exit NetBeans or leave it open if you are going straight on to

the next activity.

5.3 Making the buttons active

Activity 11

In this activity you will learn:

. the basic ideas behind Java event handling

. how to write code that will be run whenever a given event occurs, such

as a particular button being clicked.

Launch NetBeans if it is not already running. Open or reopen the project

GUIDemo from Activity 10.

Java events and event handling in a nutshell

So far the components in our GUI are inactive. If you run the project and

hover over, or click the buttons, their appearance changes, indicating that

they ‘afford’ being pressed, but nothing further happens. So how can we

make the GUI ‘come alive’?

When a user interacts with a GUI component Java creates a special object

called an event. There are many different kinds of events for different kinds

of action. Some examples are:

. clicking a button generates an ActionEvent

. resizing a window generates a ComponentEvent

. pressing the Return key generates a KeyEvent.

However an event on its own won’t have any effect. To make the GUI

respond to the event we need a special kind of Java object called a listener

NetBeans Guide

74

Black plate (75,1)

whose job is to wait for the event and take appropriate action when it

occurs.

The listener has to be registered with the component where the event will be

generated. You can imagine the listener ‘signing up’ with the component.

When the event occurs at the component end, the Java runtime system

automatically generates a message that is sent to the listener. Note that the

programmer doesn’t have to write any code to send the message, only to

register a suitable listener with the component, and the runtime system will

be responsible for the message-send.

At the listener’s end a method is executed that contains event handling code

and it is this code that defines how the GUI will respond to the user’s action.

Naturally we have to write the body of this method ourselves, since Java has

no way to know how we wish the GUI to behave.

The message sent to the listener is a method invocation like any other, but as

there are different messages for different kinds of events, so there are

different kinds of listeners with different sets of methods in their interfaces.

When the message is sent to a listener the event object itself is included as

the argument of the message. The event contains information about the event

and the listener’s handling code can extract this information and use it if

required.

Figures 5.19 and 5.20 illustrates this Java event model diagrammatically. The

listener is only schematic and isn’t visible in the GUI of course.

Figure 5.19 A listener is registered

Figure 5.20 Event handling

Although the GUI Builder cannot provide the program logic that will

determine how our GUI will behave, it is able to automate the routine details

of the event model for us. As we shall see, all we have to do manually is:

. select the component where the event will be generated

75

5 Using the NetBeans GUI Builder

To keep things simple

we have described just

one listener and one

component but in fact

it’s possible for several

listeners to register with

a given component, and

also for a listener to be

registered with more than

one component.

Black plate (76,1)

. choose what type of event we are interested in

. complete the body of the event handling method.

All the rest – setting up and registering the listener – is taken care of for us

by the GUI Builder.

Adding events

In the Inspector, right-click the onButton node. This should correspond to

the button labelled On. You can check that you have the right button

selected by looking at the Design view.

From the menu choose Events. This brings up a submenu of different kinds

of event that can happen in a user interface. We will make our buttons

respond to a mouse click. From the submenu pick Mouse, then

mouseClicked.

NetBeans immediately takes us to the source code window, where a new

method has been automatically created for us:

private void onButtonMouseClicked(java.awt.event.

MouseEvent evt)

{

// TODO add your handling code here:

}

This is inviting us to write the event handling code that specifies what is to

happen when the button onButton receives a mouse click. Since the

purpose of this button is to switch the light bulb on, replace the TODO

comment with the statement:

lightBulb.setBackground(java.awt.Color.YELLOW);

You will remember that we renamed the variable referring to the ‘light bulb’

(really a JLabel of course) to lightBulb. This line of code changes the

colour of our ‘light bulb’ to yellow, to simulate the light coming on.

Now carry out exactly the same steps for the other button, offButton,

whose purpose is to switch the light off. NetBeans will invite us to complete

a second method, like the one above but this time called

offButtonMouseClicked. Replace the TODO comment with the code:

lightBulb.setBackground(java.awt.Color.LIGHT_GRAY);

This line of code changes the colour of our ‘light bulb’ back to grey, to

simulate the light going out.

The program is now complete! If you run the project you should find that

clicking the On button makes the light come on and clicking the Off button

makes it go out.

Removing an event

We often add an event by mistake, or change our minds, and want to remove

an event. This is quite easily done.

NetBeans Guide

76

You can also work

directly in the Design

view. Right-clicking on

the On button will bring

up the same menu. The

only slight disadvantage

of working purely with

the Design view is that

with complicated forms

it would be easy to

select the wrong item by

mistake. This is less

likely to happen when

using the Inspector.

Class Color in the

package java.awt

represents colour objects

in Java graphics.

Remember that the

program must actually be

running for the buttons

to be active. In Preview

Design clicking the

buttons will have no

effect.

Black plate (77,1)

Open a Properties dialogue for the component which is the source of the

event and click on the Events button. You will now see a list of all the

possible kinds of events (Figure 5.21). If you highlight the name of a

particular event handling method (such as onButtonMouseClicked in

Figure 5.21) and press Delete or Backspace the selected event handling

method will be removed from the component.

Figure 5.21 The Events window

Summary of activity

In this activity you have learnt how to make your GUI respond to events

such as mouse clicks.

5.4 About layouts

You have seen that the GUI Builder makes it easy to lay components out

exactly as we want and align and size them accurately. Behind the scenes

NetBeans is using something called a layout manager, which is a Java object

that defines the scheme used to lay components out in a container. Each of

the Layout Manager classes, of which there are a number, takes a different

approach to arranging the components. Several common layouts are

described in Appendix C.

The default layout used by the GUI Builder, called Free Design, has been

adapted from the Group Layout manager introduced in Java 1.6. This layout

defines the sizes of components and their position with respect to one

another in a way that makes GUIs platform-independent and ensures that the

placement of components within them is preserved if the window is resized.

Free Design is the best Layout Manager for general purposes, although

sometimes you may be asked to use one of the layouts in Appendix C, if it

is the most appropriate choice for some particular part of a GUI.

The GUI Builder makes it easy to change the layout manager for a container

if required. Right-click on the container concerned; choose Set Layout; and

then in the submenu pick the desired layout.

77

5 Using the NetBeans GUI Builder

Black plate (78,1)

6 Using JUnit to test your code

Testing a very small project needs no special techniques. We simply write a

test class with a main method that creates some suitable objects, invokes

the methods under test on these objects, and examines the results to see if

they are what we expect. If the observed results agree with the expected

ones, the code has passed the test. If one or more results are not correct, we

go back and debug the code.

However, this ad hoc approach does not scale up successfully to larger

programs. Creating, managing and running the tests required for projects that

may contain hundreds or thousands of classes is impractical without some

form of automation. This is where JUnit comes in.

JUnit is a framework that makes it easy for us to write tests in a standard

format, to manage the tests we have written, to run them all together and to

generate a report of the results. The tests we write are unit tests – tests of a

single method. We group them into test classes, and can further group the

test classes into test suites.

Many IDEs provide built-in support for JUnit. In this guide you will learn

how to use JUnit from NetBeans, but the basic principles will be similar in

other IDEs.

JUnit is intended to be used in ‘cookbook’ style. That is, behind the scenes

some outstandingly clever code is working for us, but we can generally take

most of it for granted (this is true of all high-level language programming!).

So you will find that as we go along we do not explain everything, only

what you need to know to use JUnit effectively.

Our unit testing is black box. We do not examine the internal workings of

methods, only whether they conform to their specifications, that is, produce

the right results.

How JUnit is used

Before you begin the activities in this section you will find it useful to have

an overview of how JUnit is used.

1 For each class we want to test we create a corresponding test class.

2 In each test class we write test methods, generally one for each test we

want to carry out.

3 In the test methods we include assertions. An assertion is a special

statement that evaluates to true or false depending on whether or not an

observed result agrees with the expected one.

4 We then call on the JUnit test runner, which executes all the test methods

in the test classes. If none of the assertions in a test method evaluate to

false – that is every actual value agrees with the expected one – the test

passes. Otherwise it fails.

5 The test runner then produces a summary of which tests passed and

which failed.

NetBeans Guide

78

A unit test is the smallest

possible test. We can

think of unit tests as the

atoms from which all

larger-scale tests are built

up.

JUnit has effectively

become the standard for

automating unit tests. It

is one of a family of

testing frameworks for

different programming

languages, such as

CppUnit for C++, nUnit

for .NET and so on. The

first of these was sUnit

written by Kent Beck for

the Smalltalk language.

Black plate (79,1)

Note that when the test runner executes the test methods they run in an

environment that is special to JUnit and the test classes do not have to

contain a main method. They do have to contain at least one test method

though.

The first activity is designed to familiarise you with the nuts and bolts of

creating a test class and executing it in the test runner. Once you have got

this grounding, we will show you how you can apply it to a more realistic

example.

At the time of writing NetBeans supports two versions of JUnit – JUnit 3.8.2

which is the traditional JUnit framework and JUnit 4.5 which provides a

simpler and more flexible framework based on annotations. In this guide we

use only version 4.5.

6.1 A simple test case

Activity 12

In this activity you will learn how to:

. create a test class

. add test methods to the test class

. run a test class and interpret the results

. complete a test method by writing an assertion.

Creating a test class

Launch NetBeans if it is not already running. Open the project Documents

\NBGuide2\DryRun. The single package in this project, dryrun,

contains a single class called DummyClass. This class is completely empty

and does nothing. It is there simply so we can look at the details of how to

set up and run a test class containing a test method, in preparation for the

testing activities that come later.

In the Projects window expand the node for project Dry Run. Notice the

folders Test Packages and Test Libraries. If you open the Test Libraries

folder you will see that it contains the libraries for JUnit 3.8.2 and JUnit 4.5,

although as noted you will only be working with JUnit 4.5.

The Test Packages folder is where our test classes go. Normally for each

Java class we are testing there will be a corresponding test class, and the test

classes will be arranged in a package structure that mirrors the package

structure of the classes under test.

Right-click on Test Packages and choose New|Java Class…. Enter

DummyClassTest for the Class Name: and dryrun for the Package:

as in Figure 6.1. Press Finish.

79

6 Using JUnit to test your code

Java annotations are a

way of providing extra

information to the

compiler or the runtime

system. Annotations

begin with the @ symbol,

which represents ‘AT’,

standing for Annotation

Type.

A test class can have any

name you like but

sticking to the

convention that the test

class corresponding to

class SomeClass will

be named

SomeClassTest

makes it easy to match a

class to its test class.

Black plate (80,1)

Figure 6.1 Creating the test class

This will create the test class and make it part of the package we have

specified. DummyClassTest will open automatically in the Source Editor.

The test class must import the classes in the package import org.junit,

so before going further add the following import statement

import org.junit.*;

in the source code for the class DummyClassTest, directly after the

statement

package dryrun;

NetBeans will warn that the import is unused, which of course is true at

present. Ignore this.

Creating a test method

A test class must have one or more test methods. Each test method must be

public, void, and take no argument. To tell the JUnit test runner that a

method is a test method that should be executed when the tests are run we

simply annotate the method with @Test, like this:

@Test

public void testSomeMethod()

{

// body of test method

}

This @Test annotation acts as a special marker that the test runner will

recognise.

A test method can be given any name we like, but as in the case of test

classes there is an advantage in following a standard naming convention. We

shall name the test methods corresponding to a method someMethod as

successively testSomeMethod1, testSomeMethod2, etc.

NetBeans Guide

80

The reason for doing this

now rather than simply

using the NetBeans Fix

Imports feature later is

that there are two similar

packages: this one org.

junit which contains

the classes for JUnit 4.5

and another junit.

framework containing

the classes for version

3.8.2. It is very easy to

import classes from the

wrong package by

accident and so we

recommend taking this

precaution against that

happening.

Black plate (81,1)

Add a test method testDummyMethod, which should not have a body yet,

to your test class. Ignoring comments the class DummyClassTest should

now be as follows:

package dryrun;

import org.junit.*;

public class DummyClassTest

{

@Test

public void testDummyMethod()

{

}

}

At this point you have a runnable test class! In the Projects window right-

click on DummyClassTest and choose Run File. The runner will execute

the test and report the Test Results in a new window (Figure 6.2).

Figure 6.2 The test results

As you see it has passed with flying colours! If you are surprised at this –

after all we haven’t actually tested anything – remember that for a test to fail

an assertion has to evaluate to false. We haven’t added any assertions yet so

there is nothing that can evaluate to false and the test is bound to pass.

An alternative way to run the test is to right-click on the class

DummyClass that is being tested and choose Test File, or highlight

DummyClass and press Crtl+F6. However note that it is essential to test

the class, not the overall DryRun project, otherwise our manually written

test methods will not be executed and we will obtain misleading results (it

will always seem as if every test has passed).

Adding assertions

There are two forms we can write an assertion in. The first, which we will

concentrate on for the moment, uses the Java keyword assert and is quite

simple and intuitive. Here’s an assertion stating 2 plus 2 is 5:

assert 2 + 2 == 5;

Insert this statement in the body of your testDummyMethod and run the

test class again. This time the test will fail of course, since 2 + 2 and 5 are

not equal, see Figure 6.3.

Figure 6.3 A test has failed

81

6 Using JUnit to test your code

Black plate (82,1)

Notice that if you double-click the yellow warning symbol NetBeans will

locate the test method that failed in the Source Editor. Also notice that you

can re-run the test easily by clicking the Rerun button in the Test

Results window.

Assertion statements can also include a string to provide extra information if

the assertion fails. Try changing the assertion in testDummyMethod to

assert 2 + 2 == 5 : "Do the sums add up?";

When you run the test again the message string appears in the test report

saying testDummyMethod has failed.

A test method terminates as soon as there is a failure

To illustrate that a test method terminates as soon as there is a failure,

change testDummyMethod by adding print statements before and after the

assertion, as follows:

@Test

public void testDummyMethod()

{

System.out.println("before");

assert 2 + 2 == 5 : "Do the sums add up?";

System.out.println("after");

}

Run the test class and observe that only ‘before’ is printed in the Output

window (you may need to click the Output – DryRun (test) tab to see the

output). At the next line of code the test method evaluates the assertion,

giving false, and because of this the method returns immediately without

executing the second print statement.

Now change the assertion to

assert 2 + 2 == 4 : " Do the sums add up?";

This time when you run the test class the test is passed and ‘before’ and

‘after’ are both output. The message string in the assertion is not shown of

course, since the assertion has not failed.

The fact that a test method terminates as soon as a failure is found has

important implications for the design of test methods. There is nothing to

stop us putting any number of assertions in a test method, but as soon as one

fails none of the following ones get evaluated, so we don’t know whether

they would have failed or not.

If we do have more than one assertion in a test method and a failure is

recorded, we can of course fix the software and run the test again. This time

the same failure will not occur but the corresponding test method will check

further assertions and one of them may fail. When we correct the new fault

and test again, yet another assertion may fail, and so on.

Of course, if we continue correcting any faults as we discover them, we will

eventually reach a point at which no further failures are reported.

NetBeans Guide

82

Black plate (83,1)

However, if we want to maximise the information we get from each test run

we should keep the number of assertions per test method as small as

possible and if necessary spilt test methods up to give more methods but

with fewer assertions in each one.

Summary of activity

In this activity you have learnt how to create a test class, how to use the

JUnit test runner and what the test results it produces look like. You have

learnt how to write an assertion in a test method. Finally, you learnt that a

test method terminates as soon as an assertion in it fails, which leads us to

aim at keeping the number of assertions in any one method to a minimum.

In the next activity you will see a slightly more realistic example of testing,

involving more than one class and involving several methods that carry out

significant tasks.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

6.2 Creating and using test objects

Activity 13

In this activity you will learn how to:

. set up a fixture containing test objects

. test that a method throws an exception where expected

. use a different form of assertion

. develop tests before writing the corresponding methods

. write a complete set of unit tests for a class.

Open the project Documents\NBGuide2\ShoppingSpecification.

This contains, in a single package shopping, three classes:

. Item, which represents an item of shopping with a description and a

price

. Basket, which represents a collection of items that a customer has

gathered

. NullItemException, a user-defined runtime exception that will be

thrown if an attempt is made to add a null item to a shopping list.

The classes Item and NullItemException are already complete and

require no testing.

Basket has methods that allow items to be added and removed, a method

to return a collection containing the items in the basket, and a method to

calculate the total cost of the items.

The only methods in Item are getters for its two attributes, description

and price. These attributes are set by the Item constructor.

83

6 Using JUnit to test your code

You might like to think

of this project as part of

a simplified online

shopping system that is

being developed.

Black plate (84,1)

Generate the Javadoc for the project by highlighting it in the Projects

window and using the Run|Generate Javadoc option as detailed in

Activity 6 or alternatively right-click on the project and choose Generate

Javadoc.

You should take a little time to browse through the Javadoc for Basket and

Item. In particular you should study the detail of the methods in Basket

since this is the class you will be testing.

Next expand the project in the Projects window and open the source of the

class Basket. You will find that its constructor is complete but – with the

exception of the getter method getContents – its methods have not yet

been implemented. The method headers are all complete but the bodies of

the methods have not been written. (The method calculateTotal returns

a temporary value of 0, just so the code will compile.)

This is because we are following a test-first approach to program

development. This is a philosophy in which we begin by using the

specification to produce a set of tests. Code that meets the specification must

be capable of passing these tests.

When we have written the tests, we proceed to write the code and submit it

to the tests. If there are any failures, we correct the code and test it again.

This cycle of test and fix is repeated as many times as necessary, until

eventually we obtain a version of the code that successfully passes all the

tests.

To tie this approach in with JUnit we can use the following procedure.

1 Working from the class specifications, write skeleton classes that contain

empty methods. These methods have headers but do not implement any

behaviour yet, the method bodies are empty.

2 From these classes create corresponding test classes.

3 In the test classes write the unit tests.

4 Fill in the bodies of the methods to be tested, so the behaviour is now

implemented, and run the tests.

5 If there are any failures – discrepancies between expected and actual

results – amend the method code and re-test. Continue the cycle of

testing and correcting until the code passes all the tests.

In our example the classes Item and NullItemException are complete

and you can assume they have already been tested. However, as you have

seen the methods in Basket have not been implemented yet. In line with

the test-first philosophy discussed above, we are going to write the unit tests

for Basket first and only then write the missing code.

NetBeans Guide

84

When you generate the

Javadoc you may notice

in the Output window

two messages saying that

item is not a parameter.

These are because we

have not implemented

the method bodies yet so

you can ignore them!

Black plate (85,1)

1 What tests are needed?

From the documentation we learn that the class Basket has four methods

(Table 6.1).

Table 6.1 Method summary for Basket

void addToBasket(Item item)

Adds the specified item to this basket.

Throws NullItemException if the item

is null.

double calculateTotal()

Calculates the total value of the items in

this basket.

java.util.Collection<Item> getContents()

Returns a collection containing the items

in this basket.

void removeFromBasket(Item item)

Removes the specified item from this

basket.

As you see, one of these is a getter method. We shall take the view that

getters do not need testing. The code is simple and can be checked by

inspecting it.

Thus, in line with this view, we will assume that getContents() does

not require testing.

Note also that addToBasket() throws an exception if the argument is

null. This is just so we can demonstrate how to test that an exception is

thrown where it should be, we aren’t implying that methods in general

should throw an exception if an argument is null or anything like that.

To test the remaining methods we will adopt the plan shown in Table 6.2

below. There are other tests we really ought to do – for instance, remove an

item from a basket that is not empty and check that the total is correct – but

our main focus here is on showing how JUnit is used, so we will keep

things simple by sticking to these eight tests.

Table 6.2 The test plan

Method Test

addToBasket 1 Add an item to an empty basket and check that

the contents of the basket are correct.

2 Attempt to add a null item to an empty basket

and check that an exception is thrown.

3 Add an item to a basket that is not empty and

check that the contents of the basket are

correct.

4 Attempt to add a null item to a basket that is

not empty and check that an exception is

thrown.

removeFromBasket 1 Remove an item from a basket that is not

empty and check that the contents of the

basket are correct.

85

6 Using JUnit to test your code

Black plate (86,1)

calculateTotal 1 Check that if a basket is empty the total is

zero.

2 Add an item to an empty basket and check that

the total is correct.

3 Add an item to a basket that is not empty and

check that the total is correct.

2 Create the test class

Expand the node for the project Shopping Specification, right-click on

Test Packages and choose New|Java Class…. Name the class

BasketTest and the package shopping and click Finish.

The test class BasketTest will open automatically. Begin by adding the

import statement for the JUnit classes:

import org.junit.*;

3 Add skeleton test methods

Add skeleton test methods for each of the eight tests in the test plan

Table 6.2. Because these all have a similar structure you will be able to

reduce the amount of typing involved by making use of copy and paste.

Each method should be annotated with @Test, be public and void, and

take no arguments. The body of the method should be empty at this point.

The methods should be named

testAddToBasket1

testAddToBasket2

testAddToBasket3

testAddToBasket4

testRemoveFromBasket1

testCalculateTotal1

testCalculateTotal2

testCalculateTotal3

As you see the names correspond in a straightforward way to the entries in

Table 6.2.

So, for example the first test method will be

@Test

public void testAddToBasket1()

{

}

4 Create a test fixture

To carry out the tests we will need to create some suitable test objects,

referred to as fixtures. One way this could be done is by giving each test

method its own separate object creation code. In situations where there are

only one or two test methods this would be the simplest approach. However,

NetBeans Guide

86

We can also get

NetBeans to generate test

classes automatically but

this produces only a

single test method for

each method in the class,

where we want several,

and it generates some

features we don’t

require, so we will

produce our test class

manually.

If you need to tidy up

the formatting of your

code at any point

remember NetBeans will

do this for you

automatically if you type

Alt+Shft+F or right-click

in the Source Editor and

choose Format.

Black plate (87,1)

in the present example we have eight test methods so it would lead to a

good deal of duplication which we would like to avoid.

JUnit provides a facility that allows us to write the object creation code only

once but use it many times. We put the code in a special method which is

annotated with @Before. This method can be called what we like, but a

common convention is to name it setUp and we shall follow this.

Before running each test method, JUnit automatically calls setUp and

creates a completely fresh set of objects for that test.

Of course, the variables that refer to the test objects cannot be local to

setUp, but must be declared in the main body of the test class, otherwise

they would not be available to the test methods.

Examining Table 6.2 we see that we require an instance of Basket plus

two instances of Item, because some tests involve adding an item to a

basket that already contains another item. Below we have highlighted in bold

the code to add to BasketTest to create a suitable test fixture.

public class BasketTest

{

Basket bskt;

Item item1;

Item item2;

@Before

public void setUp()

{

bskt = new Basket();

item1 = new Item("Gizmo", 10.99);

item2 = new Item("Blivet", 1.49);

}

At this point you should add the emboldened code to your BasketTest

class.

Note that @Before has a counterpart @After. A method with this

annotation is automatically called at the end of each test method. This is in

case a test method has acquired resources that need to be released

immediately. Most of the time @After is not needed and we shall not be

using it.

5 Write the tests

The next stage is to add suitable statements to the test methods. Here is the

code for each of them, making use of the objects from the test fixture in

each case. At this stage you are asked only to read and study the code and

explanations – do not modify the test class yet. Note that as we go along we

introduce two new features of JUnit:

. how to tell JUnit that a test ought to throw an exception;

. how to compare floating-point numbers.

In testAddToBasket1 we add an item to the basket, then get the

contents of the basket as a collection and check that the collection returned

has the right size and contains the right item.

87

6 Using JUnit to test your code

Black plate (88,1)

@Test

public void testAddToBasket1()

{

// Add an item to an empty basket and

// check that the contents of the basket are correct.

bskt.addToBasket(item1);

Collection c = bskt.getContents();

assert c.size() == 1;

assert c.contains(item1);

}

In testAddToBasket2 we attempt to add a null item to an empty basket

(remember setUp() is run before each test method is executed, so we will

be starting again with an empty basket referenced by bskt) and check that

an exception of the right type is thrown.

To do this we add a special expected parameter to the @Test annotation.

Notice that the class of the exception is tested.

@Test(expected = NullItemException.class)

public void testAddToBasket2()

{

// Attempt to add a null item to an empty basket and

// check that a NullItemException is thrown.

bskt.addToBasket(null);

}

In testAddToBasket3 we begin by adding an item to the basket. We

then confirm that when the second item is added the contents of the basket

are correct, by getting the collection and checking that its size is right and

that it contains the correct items.

@Test

public void testAddToBasket3()

{

// Add an item to a basket that is not empty and

// check that the contents of the basket are correct.

bskt.addToBasket(item1);

bskt.addToBasket(item2);

Collection c = bskt.getContents();

assert c.size()== 2;

assert c.contains(item1) && c.contains(item2);

}

NetBeans Guide

88

Black plate (89,1)

In testAddToBasket4 we begin by adding an item to the basket. We

then check that when an attempt is made to add a null item an exception of

the right type is thrown.

@Test(expected = NullItemException.class)

public void testAddToBasket4()

{

// Attempt to add a null item to a basket that is not

// empty and check that an exception is thrown.

bskt.addToBasket(item1);

bskt.addToBasket(null);

}

In testRemoveFromBasket1, we add an item to the basket, then remove

it and check that the basket is empty once more.

public void testRemoveFromBasket1()

{

// Remove an item from a basket that is not empty and

// check that the contents of the basket are correct.

// Put something in the basket

bskt.addToBasket(item1);

Collection c = bskt.getContents();

assert c.size() == 1;

// Take it out again

bskt.removeFromBasket(item1);

c = bskt.getContents();

assert c.isEmpty();

}

The three methods that test calculateTotal involve something new

because we need to compare two floating-point values to see if they agree.

This is not as straightforward as it might seem. You may have sometimes

noticed that on your calculator you can end up with, say, 2.999999999 when

the answer is really 3. This is because floating-point numbers have only a

certain level of accuracy and calculations on them can give results that are

slightly out. Java floating-point calculations work in a similar manner.

This means that when we compare two floating-point values of type float

or double we have to specify how near they must be to each other to be

considered equal. This tolerance is called delta.

It also means we cannot just use a simple assert statement as we have

previously. We need to invoke a static method of the class Assert (part of

the org.junit package).

89

6 Using JUnit to test your code

Black plate (90,1)

The assertion takes the form:

Assert.assertEquals(<(optional) message string>,

<expected value>, <actual value>, delta)

The <expected value> and the <actual value> need to agree to

within delta for the assertion to succeed. For example, assertEquals

(4.99, 5.00, 0.01) will succeed because the difference between the

expected and actual values is not greater than the tolerance 0.01.

In the three tests below we have used assertions that check the total using a

delta that we have set at 0.005, since we are dealing with money for which

0.01 is the smallest possible increment. A value of less than 0.01 is required

to ensure that, for example, the distinct monetary values 10.99 and 10.98 are

considered as unequal by assertion.

@Test

public void testCalculateTotal1()

{

// Check that if a basket is empty the total is zero.

Assert.assertEquals(0, bskt.calculateTotal(),

0.005);

}

@Test

public void testCalculateTotal2()

{

// Add an item to an empty basket and

// check that the total is correct.

bskt.addToBasket(item1);

Assert.assertEquals(10.99, bskt.calculateTotal(),

0.005);

}

@Test

public void testCalculateTotal3()

{

// Add an item to a basket that is not

// empty and check that the total is correct.

bskt.addToBasket(item1);

bskt.addToBasket(item2);

Assert.assertEquals(10.99 + 1.49,

bskt.calculateTotal(),

0.005);

}

NetBeans Guide

90

This is only one of a

whole series of static

methods provided in

Assert. If you are

interested you can

consult the Javadoc for

the class.

Black plate (91,1)

To save you spending too long typing we have provided a text file,

Activity 13.txt, containing the code for all the test methods.

Open this file (you can do this from NetBeans using File|Open File… or

from a text editor such as Notepad or Notepad++, whichever you prefer)

and, using copy and paste, replace the empty method bodies in the eight test

methods with the required test code. Remember that you will also need to

add

(expected = NullItemException.class)

to the @Test annotations of the methods testAddToBasket2 and

testAddToBasket4.

When you have added the required code, use Fix Imports (Ctrl+Shift I) to

add an import for the class Collection, and then run the tests. You

should find seven failures, because the methods of Basket have not been

implemented yet!

One test will pass – when the total value of an empty basket is checked it is

found to be zero. This is because we made the method calculateTotal

return 0 temporarily, as a device to allow the class to compile even though it

is incomplete.

You have now written a complete set of tests. Since they nearly all fail, you

might feel not much has been achieved, but in fact we have made a great

deal of progress, because we now have a good set of tests we can apply to

Basket.

Summary of activity

In this activity you have learnt how to create a test fixture using the

@Before annotation. You learned how to check that a method throws an

expected exception of the right type. You learned how to use the static

method Assert.assertEquals() to compare two floating-point

numbers. Finally you completed the coding of the eight test methods.

Adopting a test-first approach, we have written the unit tests before the

corresponding method code. In the next activity you will go on to apply the

tests to a completed version of the class Basket, to see if the specified

behaviour has been implemented correctly.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

6.3 Test and fix

Activity 14

In this activity you will learn how to:

. detect a program fault by running unit tests

. identify the location of a fault

. correct a fault and re-test the code.

91

6 Using JUnit to test your code

Black plate (92,1)

Launch NetBeans if it is not already running.

Open the project Documents\NBGuide2\Shopping. This contains the

same three classes as in the previous activity but now all the methods in

Basket are intended to be fully implemented. The code may not be correct,

of course, which is why it needs to be tested!

The project also contains a test class BasketTest, identical to the one you

developed in the previous activity. You will run this test class to see if

Basket passes.

Run BasketTest. You should get the result shown in Figure 6.4.

Figure 6.4 A test has failed

The class has not passed all the tests! This is because we have introduced a

deliberate error, which you will now track down.

Expand the node with the warning icon (Figure 6.5)

Figure 6.5 Getting more information

Double-click on the line

at shopping.BasketTest.testRemoveFromBasket1

(BasketTest.java:80)

(or right-click and choose Go to Source) and you will be taken to the line

(line 80 in BasketTest) at which the failure occurred. The assertion

assert c.isEmpty();

in the method testRemoveFromBasket1 is highlighted.

This is what failed, but what was the reason for the failure? The root cause

must lie in the method under test, which is removeFromBasket in class

Basket.

NetBeans Guide

92

Black plate (93,1)

In the test method testRemoveFromBasket1, the first assertion

assert c.size() == 1;

passed (no failure was reported for this line). So we know that an item was

successfully added to the basket. However, after then trying to remove the

item, the second assertion

assert c.isEmpty();

failed. So we deduce that the item has not actually been removed from the

basket.

Now open Basket and examine the code for removeFromBasket. You

should find the following:

public void removeFromBasket(Item item)

{

// TODO

}

There’s the problem! The programmer forgot to complete the method but

since the class compiled successfully the error was not spotted. Enter the

correct code, which should be:

public void removeFromBasket(Item item)

{

contents.remove(item);

}

When you have made this change right-click on the project and choose

Clean and Build, then run the tests again. This time they should all pass.

This demonstrates the cycle of test and fix.

Summary of activity

In this activity you have learnt how to detect and locate errors by running

unit tests, and how the cycle of test and fix operates.

You can now exit the IDE or leave it open if you are going straight on to the

next activity.

93

6 Using JUnit to test your code

Black plate (94,1)

6.4 Running a test suite

Activity 15

In this activity you will see how to run several test classes as a suite. We

mentioned earlier that it is possible to group test classes and run them all

together and the purpose of this short activity is show how this is done,

using appropriate annotations from the JUnit libraries.

Launch NetBeans if it is not already running. Open the project Documents

\NBGuide2\TestSuiteDemo. Expand the Test Packages node, then

the package test.

You will see that it contains two test classes and a third class TestSuite.

The test classes are:

. ClassATest, which we have given a test method
testTweedledum() that passes, and

. ClassBTest, which we have given a test method
testTweedledee() that fails.

The class TestSuite, as you may guess, groups the two test classes

together. To inform the test runner that this is a suite of test classes we

annotate the class itself with @RunWith. To indicate which test classes

belong to the suite we use the annotation @Suite and then give an array of

the test classes.

Omitting comments, the code of the TestSuite class is as follows. Note

the imports from the packages org.junit.runner and org.junit.

runners.

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses(

{

ClassATest.class, ClassBTest.class

})

public class TestSuite

{

}

Begin by running the two test classes separately and confirming that one

passes and the other fails. Then run TestSuite and observe that it

executes both test classes together, as expected.

Summary of activity

In this activity you saw a group of test classes can be grouped into a test

suite and executed all together. You can now exit the IDE or leave it open if

you are going straight on to the next activity.

NetBeans Guide

94

The ability to run many

test classes at once is

essential for regression

testing. Whenever we

add a new class or

change an existing one,

there is a possibility that

some other part of the

software will now

‘regress’ and stop

working. So as well as

testing the part we have

just changed we also

need to re-run the unit

tests for all the other

classes.

Black plate (95,1)

7 Getting started with the GlassFish
Server

The NetBeans IDE allows us to develop projects to be run in an enterprise

server (also referred to as an application server).

An enterprise server is a large-scale system that provides a standard

environment for the execution of software that is intended to be accessible

over the internet (or at least over a local network). For example when you

connect to a web page, that page is likely to have come from an enterprise

server somewhere.

For development purposes we generally start with a client that is on the

same computer as the server and then, once the application has been

developed and tested locally, we deploy it in a distributed setting.

The enterprise server we use is the Oracle GlassFish Server. This is an

industrial-strength product, and if your system were exposed to the internet it

would be possible to use this server to host full-blown websites.

The following activity provides a first taste of using the server. As we shall

see shortly, the server can support several different kinds of project. The one

you will meet in the activity is a Web project which uses a servlet to provide

an HTML page viewable from a browser. You can recognise a Web project

in the Projects window from its distinctive icon, symbolising the World

Wide Web.

7.1 Deploying a Web project

Activity 16

In this activity you will learn:

. what a servlet is and what deployment to a server means

. how to deploy a project from NetBeans

. how to access the deployed servlet from a browser.

Servlet basics

A servlet is an object which runs inside a web server and creates an HTML

page that an end user can view from a browser. Servlets generate the content

of web pages dynamically, and can interact with other Java objects to do so,

which allows for much greater versatility than is possible with static HTML

pages.

95

7 Getting started with the GlassFish Server

The NetBeans icon for a

Web project is .

During the course of this

activity it is possible

your firewall will ask

whether certain programs

should be allowed access

to the internet. If so you

should ensure that in

each case you choose the

option that allows access

and that none of these

programs is blocked.

Black plate (96,1)

For a servlet to be accessible to browsers, the servlet class must be part of a

suitable project, and the project must be deployed to a running server. This

essentially means that an archive, which contains the code of the servlet

class plus any other classes and resources that are part of the project, is

copied into a special directory belonging to the server, and the project is

registered with the server.

To view the page generated by the servlet, an end user points their browser

to a particular URL associated with that servlet. The web server creates a

new instance of the servlet class to respond to the request. The servlet

instance then constructs the appropriate HTML page and sends it back to the

browser.

In this activity we are not concerned with the details of how to write a

servlet, only with how to get one up and running on the web server once it

has been written.

Deploying a Web project

Launch NetBeans if it is not already running and open Documents

\NBGuide2\WebGreeter. This project contains a servlet,

GreeterServlet, which, as the name suggests, will generate a greeting.

To deploy the project, right-click on the WebGreeter project node in the

Projects window, and choose Run.

This will automatically:

. build the project

. start the GlassFish Server

. deploy the project to the server

. open your default browser and display the WebGreeter page.

The server is a highly complex program and start-up may take a while,

during which time a large number of messages will be shown in the Output

window. Eventually, a browser window should open to display a message

from the servlet (Figure 7.1).

Figure 7.1 A greeting from the server

NetBeans Guide

96

When the GlassFish

Server is started the Java

DB Database Process

will also be launched,

although we will not be

using it for this activity.

Black plate (97,1)

HTTP Port Number

Port 8080 is the default port at which the GlassFish Server will listen for

HTTP requests, and the corresponding URL for the servlet is

http://localhost:8080/WebGreeter/GreeterServlet.

However, when the GlassFish Server is installed the installer automatically

detects if port 8080 is already being used by some other program. If so the

installer chooses a randomly selected port number instead. If this has

happened on your computer the message displayed in the browser will show

what port number has been assigned. You should make a note of this number

and in any activity that involves the GlassFish Server replace 8080 by the

appropriate number wherever it occurs.

Pointing a browser to the servlet URL

Open a second browser window and enter the servlet URL as the address.

You should see the same message as before. For a more personalised

experience, you can add a parameter to the URL, e.g.

http://localhost:8080/WebGreeter/GreeterServlet?name=Ada.

The structure of the URL

It is worth noting how the servlet URL is built up, since when working with

the enterprise server you will meet other URLs with a similar structure.

http:// – protocol;

localhost – host name;

8080 – port number;

WebGreeter – context path (effectively the project name);

GreeterServlet – servlet name;

?name=Ada – optional parameter.

Inspecting the server

In NetBeans open the Services window (Window|Services or Ctrl+5) if it

is not already open. Expand the Servers node. Inside you will see the

GlassFish Server 3. Expand the GlassFish Server 3 node, then

Applications. From here we can see what projects are currently deployed –

in our case there is only one, WebGreeter (Figure 7.2).

Figure 7.2 The deployed project

We can also undeploy the project. Right-click on WebGreeter and choose

Undeploy. WebGreeter will disappear from the Applications node. Now if

you revisit the servlet URL – refresh the page or re-enter the URL – the

page will not be available and the server will respond with a 404 error.

97

7 Getting started with the GlassFish Server

Black plate (98,1)

Deploying the project from the Projects window

As an alternative to running the project we can deploy it first then point a

browser to the servlet URL.

In the Projects window right-click on WebGreeter and choose Deploy.

After a few moments you should see BUILD SUCCESSFUL displayed in the

Output window. If you now point your browser to the same address as

before you will see the page displayed once more.

Connecting to a remote server

So far you have been connecting to a server running on your own local

machine. Now point your browser to the URL given on your module

website. You should then connect to a version of WebGreeter running on a

server hosted on a computer at The Open University. This will function in

exactly the same manner as the local version, for example you can add an

optional name parameter.

Summary of activity

In this activity you have been introduced to servlets, and learnt how to run a

Web project and see the page generated by the servlet displayed in a browser

window.

You have also learnt how to inspect the server to find out what projects are

deployed, and how to undeploy a project.

You then learned how to view a servlet page without running the project, by

deploying the project then pointing the browser to the servlet URL.

Finally, you connected to a version of the servlet running on a remote server.

7.2 Modules associated with the enterprise server

NetBeans lets us create various kinds of project and module associated with

the enterprise server. If your module uses the GlassFish Server these will be

explained in detail as appropriate, but to give you an initial overview we

have listed them opposite (Table 7.1). You have already come across a Web

module in Activity 16.

You can recognise each kind of project by the distinctive icon NetBeans

uses.

NetBeans Guide

98

Black plate (99,1)

Table 7.1 Modules associated with the enterprise server

Type of project Description NetBeans

icon

Enterprise Enterprise applications exist to group together

a number of projects that are to work with

one another as parts of a single application.

These constituent projects, (its modules), will

each belong to one of the three project types

listed below, All the modules in an Enterprise

project are deployed together to the server as

a single working unit.

EJB Enterprise JavaBeans (EJB) modules contain

business logic. You can think of them as

doing the behind-the-scenes processing,

which is then passed back to the software

responsible for communicating the results to

end users.

Web Web applications generate web pages that

end users can view from browsers. They may

also provide web services, which are a way

of making the methods a class provides

available remotely to client programs (that

may or may not have been developed in a

different programming language).

Application Client Enterprise application client modules in some

ways resemble standard Java programs, but

they are able to communicate directly with

EJBs. They are typically used to provide a

GUI interface to an enterprise application.

99

7 Getting started with the GlassFish Server

Black plate (100,1)

Appendix A – NetBeans usability hints

Like any other major piece of software, NetBeans allows us to do most

things using keyboard commands as an alternative to mouse operations.

NetBeans also offers toolbar buttons for a number of common tasks. The

NetBeans UI can also be customised as regards font size to improve the user

experience.

Thus, in the first part of this appendix we provide a few general tips for

using NetBeans, then give keyboard shortcuts for the commonest tasks, and

explain how to find a complete list of shortcuts. Most of the shortcuts in

NetBeans follow standard conventions. The second part of the appendix

explains how to change the font size in the NetBeans interface.

Opening Help

Pressing F1 at any point opens NetBeans Help. If there is specific help

mapped to the current context then the relevant page will be displayed.

Selecting multiple items

To select multiple items that form an adjacent group, hold down Shift while

clicking the first and last items.

To select multiple items that are not adjacent, hold down Ctrl while clicking

the items required. To remove an item selected by mistake, click it a second

time while Ctrl is still depressed.

Many operations can be applied to multiple items at the same time by first

selecting the items concerned. For example, if several projects are

highlighted then right-clicking offers us the option to close them all at once.

Opening a contextual menu

Right-clicking on an icon, window or other structural item will usually bring

up a menu of options appropriate to that item.

Alternatively, if the item is selected then Shift+F10 will open the contextual

menu.

Opening a properties window

Right-click on the item and choose Properties from the contextual menu to

open a pop-up window.

Cancelling a wizard or pop-up Properties window

Press Escape or click Cancel.

NetBeans Guide

100

Black plate (101,1)

Closing the current window

Press Ctrl+W.

Accessing the main menus

Alt key combinations give access to menus. To access a menu press Alt

together with the initial letter of the name of the menu, e.g. Alt+F will open

the File menu. Once a menu is selected, use the up and down arrow keys to

move between items. If there are subordinate menus, open them with the

right arrow key and close them with the left arrow key. Press Spacebar to

choose a menu item. Press Alt on its own to close an open menu.

Navigating tree structures

Tree structures are found in many NetBeans windows. You can move around

a tree view by using the arrow keys and Page Up and Page Down, as

shown in the list below.

Key Action

Up arrow/down arrow Move up a node/down a node

Right arrow/left arrow Expand/contract the selected node

Page Up/Page Down Jump to first node/last node

A.1 Shortcut keys

Below are lists of some of the important shortcuts.

Files

Key Action

Ctrl+Shift+N New Project wizard

Ctrl+N New File wizard

Ctrl+S Save

Ctrl+Shift+O Open project

Ctrl+Alt+Shift+ P Print

101

Appendix A – NetBeans usability hints

Black plate (102,1)

Editing

Key Action

Ctrl+Z Undo last action

Ctrl+Y Redo

Ctrl+X Cut selection to clipboard

Ctrl+C Copy selection to clipboard

Ctrl+V Paste contents of clipboard

Delete Delete selection

Ctrl+A Select everything in the current window

Ctrl+F Find

Java code

Key Action

Ctrl+Shift+I Fix imports

Alt+Shift+F Format (selection, or whole class)

Ctrl+/ Comment/uncomment current line. or selected lines

Compiling and running

Key Action

F6 Run Main Project

Opening/moving focus to a window

Key Action

Ctrl+1 Projects

Ctrl+2 Files

Ctrl+4 Output

Ctrl+5 Services

Ctrl+7 Navigator

Ctrl+Shift+8 Palette

The lists above give only a selection of shortcut keys in frequent use. For

the full set consult the Keyboard Shortcuts Card which can be opened

directly from the Help menu. The latter also lists all the standard NetBeans

code abbreviations (Code Templates).

NetBeans Guide

102

Black plate (103,1)

A.2 Setting font sizes in NetBeans

This section explains how to set the fonts used in NetBeans to a larger size

for ease of reading.

There are two different font size settings in NetBeans:

. the font used in the Source Editor

. the font used in the IDE generally, for example in the menus or the

Projects window.

Setting the font size for the Editor

Section 3.2 explained how to set the font size used by the Source Editor.

The font size used by other editors – e.g. the HTML Editor – can be set in a

similar way if required.

Setting the font size for the IDE

To alter the font size used in the IDE interface you must modify the file:

C:\Program Files\NetBeans X\etc\netbeans.conf

where X is the NetBeans version, for example

C:\Program Files\NetBeans 6.9.1\etc\netbeans.conf

if you are using NetBeans 6.9.1.

IMPORTANT Before going any further make a copy of this file (so that

you can revert to the original if required).

Using a text editor such as WordPad or Notepad++ (do not use Notepad as it

will display the entire contents of the file on one line), open this file and edit

the long line that begins

netbeans_default_options= "-J-client ..."

by inserting the option –fontsize 18 at the front to give

netbeans_default_options="–fontsize 18 -J-client ..."

You can substitute any size you like for 18. When you next start NetBeans

the IDE will use the font size you have chosen.

103

Appendix A – NetBeans usability hints

It’s possible that in your

installation the string on

the right-hand side will

start with a different

option from the one in

our example.

Black plate (104,1)

Appendix B – Some common problems
and their solutions

A window ought to be open but is not visible and
selecting it from the Window menu makes no
difference

The boundary between the window and its neighbour may have been pulled

across (or down) so that the window is completely hidden. For example, a

vertical divider may have been dragged to the extreme right-hand edge of

the main NetBeans window. If this has happened, clicking on the divider and

dragging it back will solve the problem.

NetBeans windows are poorly arranged

The NetBeans IDE lets us rearrange the windows by dragging and dropping.

Occasionally we may move a window accidentally or perhaps choose an

arrangement that we decide is not what we want after all, but find it hard to

undo the change. If required Windows|Reset Windows will restore all

windows to the original layout.

When attempting to edit source code it is
impossible to make alterations

If the source file you are trying to change has been copied from somewhere

else it may be read-only. Navigate to the file in Windows, right-click on it,

select Properties and if necessary alter the Read-only attribute.

When opening a project a message warns of
reference problems

Projects often depend on resources such as other projects, or class libraries

stored in a JAR. If for any reason the resources a project needs are not in

the expected location NetBeans will warn of a reference problem when the

project is opened (Figure B1).

Figure B1 Reference problems

NetBeans Guide

104

Black plate (105,1)

To resolve the problem first close the warning window. Right-click on the

project in the Projects window, and choose Resolve Reference

Problems… .

A Resolve Reference Problems dialogue will open (Figure B2).

Figure B2 Resolve Reference Problems dialogue

Slightly different procedures are needed, depending on whether the resource

that cannot be found is:

1 a JAR or a project,

2 a library.

We will address each of these situations in turn.

1 Missing JARs or projects

First find whereabouts on your computer the missing resource is located (you

may have to investigate using Windows Explorer). Once the location has

been identified click the Resolve… button, then navigate to the missing

resource and click Open Project or Open. You should now see a message

in the Description: area saying the problem has been resolved (Figure B3).

Figure B3 A reference problem was resolved

105

Appendix B – Some common problems and their solutions

Black plate (106,1)

2 Missing libraries

Firstly note the name of the missing library. The library will need one or

more JARs and you will first need to find out what these are and

whereabouts on your computer they can be found. When you have done this

click the Resolve… button and you will be taken to the Library Manager

(Figure B4).

Figure B4 The Library Manager

Click New Library…. Make sure Class Libraries is selected, give the new

library the name you noted down, and click OK. Make sure the Classpath

tab is selected. Then add the necessary JAR or JARs one by one, by clicking

the Add JAR/Folder… button, navigating to the folder where the JAR is

located, selecting it and clicking Add JAR/Folder.

Once all the JARs have been added click OK and you should see a message

indicating that the problem has been resolved.

When opening a project a message warns of
missing server problems

This will only be relevant if your module uses the GlassFish enterprise

server.

In the same vein as missing references, problems will arise if a server is not

found at its expected location. To resolve the problem first close the warning

window. Then, right-click on the project in the Projects window, and choose

Resolve Missing Server Problems… . A Resolve Missing Server

Problem dialogue will open (Figure B5).

NetBeans Guide

106

Black plate (107,1)

Figure B5 Resolve Missing Server Problem dialogue

Normally a GlassFish Server 3 will be visible in the Available Java EE 5

compatible servers: pane. If so make sure it is selected and click OK. This

should resolve the problem.

If Glassfish Server 3 is not shown, click Add Server... and an Add Server

Instance dialogue will open.

If the Glassfish server is visible in the Add Server Instance dialogue you

may click Cancel and return to the Resolve Missing Server Problem

dialogue, which should now show that the GlassFish Server 3 is available.

Click OK to resolve the problem.

However, if no Glassfish server appears in the Add Server Instance

dialogue GlassFish may not have been installed and registered with

NetBeans for some reason, and you may need to revisit the installation

instructions.

Command-line arguments are unexpectedly not
found

Command-line arguments are set in the Project Properties. In order to pass

the arguments into the program you must run the project as a whole. If you

run a class on its own the arguments will not be found.

When using the GUI builder, an event listener does
not have the expected effect

In the GUI builder, it is extremely easy to accidentally add an event listener

to the window itself instead of the visual component, such as a button, that

you mean to add it to. This happens if you go to select the component by

clicking on it but inadvertently select the window instead.

107

Appendix B – Some common problems and their solutions

Black plate (108,1)

When you run the program and perform the action, such as clicking a

button, that you thought a listener would respond to, nothing happens

because the listener is not attached to the button at all.

The way to avoid this is to always add events by selecting the component

you want in the Inspector pane, rather than by clicking in the Design

window. That way you can be sure events get attached to the correct

component.

When attempting to start a server an exception
occurs

Only one process at a time can act as a server on a given port number.

However, it is easy to forget this and try to run two servers at once on the

same port, for example by running the same project twice, or using the same

port number in different projects.

If a port clash occurs you will typically see a message java.net.

BindException: Address already in use, or some other indication

that the server cannot start.

To solve this problem either the server already running must be stopped, for

example by terminating the project in NetBeans, or you must use a different

port number, whichever you prefer.

A more complicated situation arises if the server you are trying to start

clashes with some unknown application that is running on your computer

and just happens to be using the same port number.

If you can change the port number your program uses it will solve the

problem.

However if changing the port number is not possible you will need to

identify the other application and stop it. Open a Command Prompt and

enter:

netstat -ao

A line-by-line list of all currently occupied ports will appear. The columns to

look at are the second, which gives the Local Address ending in the port

number, and the last column, which gives the Process ID (PID).

Look down the list for the port number that your server is trying to use and

then read across to the corresponding PID and make a note of it.

NetBeans Guide

108

Black plate (109,1)

Next enter:

tasklist

Now you will see a list of all the running processes and their PIDs. By

looking for the PID you noted previously you should be able to identify

what application is using the port concerned. Stop this other application

(check you have the right one!) and now you should be able run your

program successfully.

Appendix C – Common Java layouts

Some of the most common Java layouts are listed here (although there are

more).

Border layout

A BorderLayout splits a frame or panel into five regions as shown below.

The North and South regions always take up the full width of the

container. The other dimensions of a region depend both on the space

available and the size of the component the region contains. If a region is

empty the other regions expand to take up the space available.

Figure C1 Border layout

Flow layout

A FlowLayout adds components in rows, fitting as many as possible into

each row before beginning the next one. The rows can be centred, which is

the default layout (Figure C2), or set to be aligned left or right.

Figure C2 Flow layout

109

Appendix C – Common Java layouts

Black plate (110,1)

Grid bag layout

A GridBagLayout is like a table of cells. The rows and column widths

can vary, adjacent cells can be merged, and so on – much like a spreadsheet,

or a table inserted into a word-processed document.

Figure C3 Grid bag layout

The figure shows a window divided up into a number of rectangular cells of

varying dimensions.

GridBagLayout offers the highest level of control and flexibility of any

layout manager. However it is very complicated to use, because so many

parameters have to be set.

Null layout

A NullLayout allows complete freedom of positioning and is very simple

to work with; however there are disadvantages. All the components have to

be positioned manually and the resulting design will not cope well if the

window is resized. Also, it may not transfer reliably to other platforms. So a

NullLayout would not be used for a completed implementation, although

it might be adequate for prototyping.

NetBeans Guide

110

Black plate (111,1)

Index

A

abbreviations 43

annotations 79

@Before 87

@RunWith 94

@Suite 94

@Test 80, 88

API documentation 24

application server 95

assertEquals 90

assertion 78, 81

B

black box testing 78

bracket completion 41

browser configuration 23

C

class library 52

code

completion 28, 38

folding 34

formatting 35

template 21, 43

command-line

arguments 48

comment toggling 43

D

delta 89

deploying a Web

project 95

E

Editor Hints 39, 42

Editor settings 19

Encapsulate Fields 36

enterprise application 99

enterprise application

client 99

Enterprise JavaBeans

(EJB) 99

enterprise server 95

error locating 42, 49

events 74

adding 76

removing 76

F

field 36

Files window 12

Fix Imports 43

fonts and colours 22, 103

G

GlassFish 95

GUI

Builder 60

component

properties 63, 69

JButton 71

JFrame 63

JLabel 67

JPanel 72

layout 77, 109

H

halting a running program 16

help files 4

HTML files (viewing) 48

I

IDE 6

preferences 19

import statement

fixing 43

using 56

Inspector window 62

J

JAR (Java Archive) files 53

Java Platform Manager 25

Javadoc

adding to IDE 25

generating 47

JDK 6

JUnit 78

L

libraries

AWT 61

Java standard 52

Swing 61

Test 13, 77, 94

line numbers 24

listeners 74

M

main class (setting) 15, 49

main project (setting) 11, 27, 32,

margin icon 41, 50

N

Navigator window 13

New File wizard 32

New Project wizard 26

O

Output window 15

P

package statement 58

packages

creating 55

default 55

hierarchies 58

moving between

projects 59

moving classes

between 59

renaming 58

Palette

(GUI Builder) 63

port conflict 108

111

Index

Black plate (112,1)

P (contd.)

project

adding a class 32

building 15

cleaning 15

closing 18

compiling 15

copying 31

creating (from

existing source

code) 44

creating (new) 26

deleting 31

file location 30

halting 16

properties 48, 49

renaming 31

revert deleted 40

running 14

running single files 49

saving 30

Projects window 12

R

Refactor 36, 38, 57, 59

renaming a method 39

reference problems 104

Run Main Project 14

S

Services window 97

servlet 95

URL structure 97

shortcut keys 101

Source Editor 13

stopping a process 16

T

test classes 78

test method 80

test fixture 86

setUp method 87

Test Packages 13, 79

test runner 78

test suites 78

try-catch 42

U

unit tests 78

W

windows

docking 10

sliding 10

Web application 99

X

Xelfi 7

NetBeans Guide

112

